AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at th...AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.展开更多
Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investig...Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.展开更多
基金National Natural Science Foundation of China(51374128)the Science and Technology Program of Guangdong,China(2013B010102026,2013B061800054,2015B090901044)
基金Project(2012CB723307)supported by the National Basic Research Program of ChinaProject(51204046)supported by the National Natural Science Foundation of ChinaProject(20130042130001)supported by the Doctoral Fund of Ministry of Education of China
文摘AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.
基金Project(2015B090926013)supported by the Science and Technology Program of Guangdong Province,ChinaProject(20170540307)supported by the Natural Science Foundation of Liaoning Province,China
文摘Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.