As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among ...As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.展开更多
AIM: To investigate the structural and biochemical changes in the early stage of reperfusion in the rat livers exposed to lobar ischemia-reperfusion (IR). METHODS: The median and left lobes of the liver were subje...AIM: To investigate the structural and biochemical changes in the early stage of reperfusion in the rat livers exposed to lobar ischemia-reperfusion (IR). METHODS: The median and left lobes of the liver were subjected to 60 min ischemia followed by 5, 10, 30, 45, 60 and 120 min reperfusion. Blood samples were taken at different time intervals to test enzyme activities and biochemical alterations induced by reperfusion. At the end of each reperfusion period, the animals were killed by euthanasia and tissue samples were taken for histological examination and immunohistochemistry. RESULTS: Cell vacuolation, bleb formation and focal hepatitis were the most important changes occur during ischemia. While some changes including bleb formation were removed during reperfusion, other alterations including portal hepatitis, inflammation and the induction of apoptosis were seen during this stage. The occurrence of apoptosis, as demonstrated by apoptotic cells and bodies, was the most important histological change during reperfusion. The severity of apoptosis was dependent on the time of reperfusion, and by increasing the time of reperfusion, the numbers of apoptotic bodies was significantly enhanced. The amounts of lactate dehydrogenase, alanine aminotransferase, aspartate aminotransfrase, creatinine and urea were significantly increased in serum obtained from animals exposed to hepatic IR. CONCLUSION: Inflammation and subsequent apoptotic cell death were the most important changes in early-stage hepatic reperfusion injury, and the number of apoptotic bodies increased with time of reperfusion.展开更多
A novel thermosetting resin system for superabrasives based on novolak and bismaleimide (BMI) was developed. The novolak resin was allylated and then copolymerized with BMI. The structure of allyl novolak and reacti...A novel thermosetting resin system for superabrasives based on novolak and bismaleimide (BMI) was developed. The novolak resin was allylated and then copolymerized with BMI. The structure of allyl novolak and reaction mechanism were analyzed by FFIR. Thermal and mechanical properties were characterized by using com- prehensive thermal analyzer (DSC-TG) and strength tester, respectively. The results showed that high molecular weight of novolak was advantageous for heat-resistance, but was unfavorable for the bending strength. High allyl content improved the heat-resistance but lowered the bending strength. When the molecular weight of novolak was 450 and allyl content was 50%, the best resin system with good heat-resistance and bending strength was obtained. It was suitable for the manufacturing of superabrasive tools.展开更多
Type‐II‐heterojunction TiO2nanorod arrays(NAs)are achieved by a combination of reduced and pristine TiO2NAs through a simple electrochemical reduction.The heterojunction‐structured TiO2NAs exhibit an enhanced photo...Type‐II‐heterojunction TiO2nanorod arrays(NAs)are achieved by a combination of reduced and pristine TiO2NAs through a simple electrochemical reduction.The heterojunction‐structured TiO2NAs exhibit an enhanced photo‐efficiency,with respect to those of pristine TiO2NAs and completely reduced black TiO2.The improved efficiency can be attributed to a synergistic effect of two contributions of the partially reduced TiO2NAs.The light absorption is significantly increased,from theUV to the visible spectrum.Moreover,the type II structure leads to enhanced separation and transport of the electrons and charges.The proposed electrochemical approach could be applied to various semiconductors for a control of the band structure and improved photoelectrochemical performance.展开更多
The electrochemical treatment of COD contained in biologically pretreated coking wastewater treated by a three-dimensional electrode system with modified coke as the particle electrode was investigated. And the electr...The electrochemical treatment of COD contained in biologically pretreated coking wastewater treated by a three-dimensional electrode system with modified coke as the particle electrode was investigated. And the electrochemical perromance of the coke modified with various active components was studied. The results show that the coke modified with Fe(NO3)2 has the lowest energy consumption and higher COD removal rate under the same condition, and the modified coke has better surface characteristics for the purpose of this study. In addition, the kinetic constant was also calculated. The study shows that the three-dimensional electrode system with Fe (NO3)z-modified coke can give a satisfactory solution in biologically pretreated coking wastewater.展开更多
We explored new approaches to replace the nitrogen atoms of arsenic, antimony, bismuth, and discovered a new paths to modify Raschig, Schiff, Andrusov, Hofmann, Colbe, Delepine reactions with arsine, stibine and bismu...We explored new approaches to replace the nitrogen atoms of arsenic, antimony, bismuth, and discovered a new paths to modify Raschig, Schiff, Andrusov, Hofmann, Colbe, Delepine reactions with arsine, stibine and bismuthine in organometallic chemistry. We have proposed a new mechanism for possible reactions.展开更多
English is the world' s most widely used one language, English and Anglo-American culture is also included in the impact on the world. The official language English is not just Britain and other countries, but also o...English is the world' s most widely used one language, English and Anglo-American culture is also included in the impact on the world. The official language English is not just Britain and other countries, but also one of the main working languages of the United Nations. Under the trend of economic globalization, the English influence is gradually increased. Speaking from Europe, about half of the enterprises to carry out the business is conducted in English, but the vast majority of information exchange and transfer the whole world need to rely on English to complete. Thus, English is an international language. Because of this huge influence of English, many countries have carried out a study and research of English.展开更多
The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly co...The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.展开更多
基金supported by the Industry and Research Collaborative Innovation Major Projects Of Guangzhou(201508020098)the National Natural Science Foundation of China(20906034+2 种基金21173088and 21207041)the State Key Laboratory of Advanced Technology for Material Synthesis and Processing,Wuhan University of Technology(2015-KF-7)~~
文摘As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.
基金Supported by University of Tehran,Vice chancellor forresearch and technology
文摘AIM: To investigate the structural and biochemical changes in the early stage of reperfusion in the rat livers exposed to lobar ischemia-reperfusion (IR). METHODS: The median and left lobes of the liver were subjected to 60 min ischemia followed by 5, 10, 30, 45, 60 and 120 min reperfusion. Blood samples were taken at different time intervals to test enzyme activities and biochemical alterations induced by reperfusion. At the end of each reperfusion period, the animals were killed by euthanasia and tissue samples were taken for histological examination and immunohistochemistry. RESULTS: Cell vacuolation, bleb formation and focal hepatitis were the most important changes occur during ischemia. While some changes including bleb formation were removed during reperfusion, other alterations including portal hepatitis, inflammation and the induction of apoptosis were seen during this stage. The occurrence of apoptosis, as demonstrated by apoptotic cells and bodies, was the most important histological change during reperfusion. The severity of apoptosis was dependent on the time of reperfusion, and by increasing the time of reperfusion, the numbers of apoptotic bodies was significantly enhanced. The amounts of lactate dehydrogenase, alanine aminotransferase, aspartate aminotransfrase, creatinine and urea were significantly increased in serum obtained from animals exposed to hepatic IR. CONCLUSION: Inflammation and subsequent apoptotic cell death were the most important changes in early-stage hepatic reperfusion injury, and the number of apoptotic bodies increased with time of reperfusion.
文摘A novel thermosetting resin system for superabrasives based on novolak and bismaleimide (BMI) was developed. The novolak resin was allylated and then copolymerized with BMI. The structure of allyl novolak and reaction mechanism were analyzed by FFIR. Thermal and mechanical properties were characterized by using com- prehensive thermal analyzer (DSC-TG) and strength tester, respectively. The results showed that high molecular weight of novolak was advantageous for heat-resistance, but was unfavorable for the bending strength. High allyl content improved the heat-resistance but lowered the bending strength. When the molecular weight of novolak was 450 and allyl content was 50%, the best resin system with good heat-resistance and bending strength was obtained. It was suitable for the manufacturing of superabrasive tools.
文摘We discovered a new approach modification Bamberger, Barton, Beckmann, Wallach, Gabriel, Hofmann, Hofmann A.W. Martius, Dimroth, Semmler-Wolff-Schroeter, Sus, Claisen, Newman-Kwart, Orlon, Pistschimuka, Robev, Smiles, Sawdey, Sommelet, Stevens, Tiemann, Fischer-Hepp, Chapman, Chattaway, Schonberg, Stieglitz Rearrangements with of phosphorous, arsine, stibine and bismuthine in organometallic chemistry. The authors have proposed a new mechanism for possible reactions.
基金supported from the National Natural Science Foundation of China (21425309, 21761132002, 21703040)China Postdoctoral Science Foundation (2017M622051) the 111 Project~~
文摘Type‐II‐heterojunction TiO2nanorod arrays(NAs)are achieved by a combination of reduced and pristine TiO2NAs through a simple electrochemical reduction.The heterojunction‐structured TiO2NAs exhibit an enhanced photo‐efficiency,with respect to those of pristine TiO2NAs and completely reduced black TiO2.The improved efficiency can be attributed to a synergistic effect of two contributions of the partially reduced TiO2NAs.The light absorption is significantly increased,from theUV to the visible spectrum.Moreover,the type II structure leads to enhanced separation and transport of the electrons and charges.The proposed electrochemical approach could be applied to various semiconductors for a control of the band structure and improved photoelectrochemical performance.
文摘The electrochemical treatment of COD contained in biologically pretreated coking wastewater treated by a three-dimensional electrode system with modified coke as the particle electrode was investigated. And the electrochemical perromance of the coke modified with various active components was studied. The results show that the coke modified with Fe(NO3)2 has the lowest energy consumption and higher COD removal rate under the same condition, and the modified coke has better surface characteristics for the purpose of this study. In addition, the kinetic constant was also calculated. The study shows that the three-dimensional electrode system with Fe (NO3)z-modified coke can give a satisfactory solution in biologically pretreated coking wastewater.
文摘We explored new approaches to replace the nitrogen atoms of arsenic, antimony, bismuth, and discovered a new paths to modify Raschig, Schiff, Andrusov, Hofmann, Colbe, Delepine reactions with arsine, stibine and bismuthine in organometallic chemistry. We have proposed a new mechanism for possible reactions.
文摘English is the world' s most widely used one language, English and Anglo-American culture is also included in the impact on the world. The official language English is not just Britain and other countries, but also one of the main working languages of the United Nations. Under the trend of economic globalization, the English influence is gradually increased. Speaking from Europe, about half of the enterprises to carry out the business is conducted in English, but the vast majority of information exchange and transfer the whole world need to rely on English to complete. Thus, English is an international language. Because of this huge influence of English, many countries have carried out a study and research of English.
文摘The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.