The loading tides are calculated by means of the Green's function method based on a high-resolution regional ocean tide model, the TOPO7.0 global ocean tide model, and the Gutenberg-Bullen A Earth model. The resul...The loading tides are calculated by means of the Green's function method based on a high-resolution regional ocean tide model, the TOPO7.0 global ocean tide model, and the Gutenberg-Bullen A Earth model. The results show that the maximal amplitude of M2 vertical displacement loading (VDL) tide in the Bohai, Yellow, and East China Seas exceeding 28mm appears 150km off the Zhejiang coast; the second maximum exceeding 20mm appears in Inchon Bay; and the third maximum exceeding 14mm is located in the northeast of the North Yellow Sea. The maximal amplitudes of S2 VDL tide at the above three locations exceed 10, 8, and 4mm, respectively. The maximal amplitudes of the K1 and O1 VDL tides, exceeding 13 and 10 mm respectively, appear near the central and north Ryukyu Islands; the amplitudes tend to decease toward the inward areas. The phases of semidiurnal VDL tides are basically opposite to those of corresponding ocean tides. The phases of diurnal VDL tides are basically opposite to those of corresponding ocean tides in the most part of the East China Sea and the eastern part of the South Yellow Sea. This anti-phase relationship generally does not hold in the rest parts of the Bohai and Yellow Seas. The distribution patterns of self-attraction and loading (SAL) tides are very similar to those of VDL tides. The SAL tides have amplitudes about 1.2-1.7 times of the corresponding VDL tides and their phases are basically opposite to the corresponding VDL tides. The maximal amplitude of M2 SAL tide also appears off the Zhejiang coast, with a magnitude exceeding 42mm.展开更多
In order to investigate the environment and acoustic filed change induced by typhoon in shallow sea, we conducted two ex- periments just before and after the passage of typhoon Damrey, which is the strongest to affect...In order to investigate the environment and acoustic filed change induced by typhoon in shallow sea, we conducted two ex- periments just before and after the passage of typhoon Damrey, which is the strongest to affect the area north of the Yangtze River since 1949, in the Yellow sea in 2012. The data show that the temperature of the whole water column increases dramati- cally except the sea surface layer after the passage of Damrey while the salinity decreases obviously. The thermocline deepens and weakens, which leads to a change of internal wave activity. The transmission losses (TL) of the two experiments show that the environment change induced by typhoon can increase the TL as large as 8 dB at a distance of 9.2 km and depth of 15 m. The scintillation index (SI) of the sound intensity is simulated to estimate the change of the effect of internal wave activity on acoustic field showing that the SI decreases to a half after the typhoon's passage. The normal mode structures of the two experiments are also significanOy different due to the thermocline changes. In addition, the signal arrives earlier after the ty- phoon's passage due to the water temperature increase.展开更多
A couple stand out in the midst of dancing senior citizens in Beijing’s Purple Bamboo Park on January 24At the break of dawn on a crisp cold January morning,seniors sauntered into the Purple Bamboo Park in Beijing’s...A couple stand out in the midst of dancing senior citizens in Beijing’s Purple Bamboo Park on January 24At the break of dawn on a crisp cold January morning,seniors sauntered into the Purple Bamboo Park in Beijing’s Haidian District.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 40676009 and 40606006)Qingdao Science and Technology Basic Research Program (Grant No. 11-1-4-98-JCH)
文摘The loading tides are calculated by means of the Green's function method based on a high-resolution regional ocean tide model, the TOPO7.0 global ocean tide model, and the Gutenberg-Bullen A Earth model. The results show that the maximal amplitude of M2 vertical displacement loading (VDL) tide in the Bohai, Yellow, and East China Seas exceeding 28mm appears 150km off the Zhejiang coast; the second maximum exceeding 20mm appears in Inchon Bay; and the third maximum exceeding 14mm is located in the northeast of the North Yellow Sea. The maximal amplitudes of S2 VDL tide at the above three locations exceed 10, 8, and 4mm, respectively. The maximal amplitudes of the K1 and O1 VDL tides, exceeding 13 and 10 mm respectively, appear near the central and north Ryukyu Islands; the amplitudes tend to decease toward the inward areas. The phases of semidiurnal VDL tides are basically opposite to those of corresponding ocean tides. The phases of diurnal VDL tides are basically opposite to those of corresponding ocean tides in the most part of the East China Sea and the eastern part of the South Yellow Sea. This anti-phase relationship generally does not hold in the rest parts of the Bohai and Yellow Seas. The distribution patterns of self-attraction and loading (SAL) tides are very similar to those of VDL tides. The SAL tides have amplitudes about 1.2-1.7 times of the corresponding VDL tides and their phases are basically opposite to the corresponding VDL tides. The maximal amplitude of M2 SAL tide also appears off the Zhejiang coast, with a magnitude exceeding 42mm.
基金supported by the National Natural Science Foundation of China(Grant Nos.U140640440806015)
文摘In order to investigate the environment and acoustic filed change induced by typhoon in shallow sea, we conducted two ex- periments just before and after the passage of typhoon Damrey, which is the strongest to affect the area north of the Yangtze River since 1949, in the Yellow sea in 2012. The data show that the temperature of the whole water column increases dramati- cally except the sea surface layer after the passage of Damrey while the salinity decreases obviously. The thermocline deepens and weakens, which leads to a change of internal wave activity. The transmission losses (TL) of the two experiments show that the environment change induced by typhoon can increase the TL as large as 8 dB at a distance of 9.2 km and depth of 15 m. The scintillation index (SI) of the sound intensity is simulated to estimate the change of the effect of internal wave activity on acoustic field showing that the SI decreases to a half after the typhoon's passage. The normal mode structures of the two experiments are also significanOy different due to the thermocline changes. In addition, the signal arrives earlier after the ty- phoon's passage due to the water temperature increase.
文摘A couple stand out in the midst of dancing senior citizens in Beijing’s Purple Bamboo Park on January 24At the break of dawn on a crisp cold January morning,seniors sauntered into the Purple Bamboo Park in Beijing’s Haidian District.