The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that ...The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that the ability of coordinated deformation betweenαandβphases can influence uniformity of microstructure evolution.Specifically,αphase maintains the lamellar structure andβphase has a low degree of recrystallization when the ability of coordinated deformation is good.In this case,αandβphases still maintain the BOR(Burgers orientation relationship),and their interface relationship is not destroyed even at large deformation.Both of the deformation extent ofαlamellae and recrystallization degree ofβphase increase with the decline of ability of coordinated deformation.Theαphase only maintains the BOR withβphase on one side,while the uncoordinated rotation with theβphase on the other side occurs within 10°.Theαandβphases rotate asynchronously when ability of coordinated deformation is poor.The degree of interface dislocation increases,andαandβphases deviate from the BOR.展开更多
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
基金financial supports from the National Natural Science Foundation of China (No. 51905436)the Natural Science Foundation of Shaanxi Province, China (No. 2020JQ-156)。
文摘The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that the ability of coordinated deformation betweenαandβphases can influence uniformity of microstructure evolution.Specifically,αphase maintains the lamellar structure andβphase has a low degree of recrystallization when the ability of coordinated deformation is good.In this case,αandβphases still maintain the BOR(Burgers orientation relationship),and their interface relationship is not destroyed even at large deformation.Both of the deformation extent ofαlamellae and recrystallization degree ofβphase increase with the decline of ability of coordinated deformation.Theαphase only maintains the BOR withβphase on one side,while the uncoordinated rotation with theβphase on the other side occurs within 10°.Theαandβphases rotate asynchronously when ability of coordinated deformation is poor.The degree of interface dislocation increases,andαandβphases deviate from the BOR.
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.