This paper,combined algebraical structure with analytical system,has studied the part of theory of C~*-modules over A by using the homolgical methods, where A is a commutative C~*-algebra over complex number field C. ...This paper,combined algebraical structure with analytical system,has studied the part of theory of C~*-modules over A by using the homolgical methods, where A is a commutative C~*-algebra over complex number field C. That is to say we have not only defined some relevant new concept,but also obtained some results about them.展开更多
Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT....Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT.Meshes containing material data were created with solid elements.Each element represented an individual grain,and the grain orientations were explicitly stored and updated at each increment.Tangential modulus method was employed to calculate the plastic shear strain increment of deformation systems in combination with a hardening law to describe the hardening responses.Both two developed subroutines were applied to simulate the texture evolution during the uniaxial tension of copper(FCC),cold rolling of IF steel(BCC) and uniaxial compression of AZ31 magnesium alloy(HCP).The predicted texture distributions are in qualitative agreement with the experimental results.展开更多
A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named ...A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.展开更多
The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing....The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.展开更多
The presented scheme named M-CAP (Maximum CAPacity) uses the CSI (Channel State Information) and its statistics to deduce an equivalent channel according to which the transmit power is allocated to the subchannels. An...The presented scheme named M-CAP (Maximum CAPacity) uses the CSI (Channel State Information) and its statistics to deduce an equivalent channel according to which the transmit power is allocated to the subchannels. And then modulation scheme is determined adaptively according to the power allocated to each subchannel. The advantage of the M-CAP scheme is that it combines power allocation and adaptive modulation while maintaining a large capacity. We demonstrate by computer simulations that the proposed M-CAP scheme can significantly improve system performance compared with the traditional schemes.展开更多
In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent per...In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization.展开更多
Based on propagator method, a fast 2-D Angle-Of-Arrival (AOA) algorithm is proPosed in this paper. The proposed algorithm does not need the Eigen-Value Decomposition (EVD) or Singular Value Decomposition (SVD) of the ...Based on propagator method, a fast 2-D Angle-Of-Arrival (AOA) algorithm is proPosed in this paper. The proposed algorithm does not need the Eigen-Value Decomposition (EVD) or Singular Value Decomposition (SVD) of the Sample Covariance Matrix (SCM), thus the fast algorithm has lower computational complexity with insignificant performance degradation when comparing with conventional subspace approaches. Furthermore, the proposed algorithm has no performance degradation. Finally, computer simulations verify the effectiveness of the proposed algorithm.展开更多
Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish...Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.展开更多
Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Th...Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.展开更多
Nano‐catalysis plays a vital role in the chemical transformations and significantly impacts the booming modern chemical industry.The rapid technological enhancements have resulted in serious energy and environmental ...Nano‐catalysis plays a vital role in the chemical transformations and significantly impacts the booming modern chemical industry.The rapid technological enhancements have resulted in serious energy and environmental issues,which are currently spurring the exploration of the novel nano‐catalysts in diverse fields.In order to develop the efficient nano‐catalysts,it is essential to understand their fundamental physicochemical properties,including the coordination structures of the active centers and substrate‐adsorbate interactions.Subsequently,the nano‐catalyst design with precise manipulation at the atomic level can be attained.In this account,we have summarized our extensive investigation of the factors impacting nano‐catalysis,along with the synthetic strategies developed to prepare the nano‐catalysts for applications in electrocatalysis,photocatalysis and thermocatalysis.Finally,a brief conclusion and future research directions on nano‐catalysis have also been presented.展开更多
Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlle...Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlled temperature and p H.The selected sodium carbonate particles are all spherical with the same mass and diameter.The dissolution process is quantified with the measurement of particle diameter from dissolution images.The concentration of dissolved sodium carbonate in solvent is calculated with the measured diameter of particle.Both surface reaction model and mass transport model are implemented to determine the dissolution mechanism and quantify the dissolution rate constant at each experimental condition.According to the fitting results with both two models,it is clarified that the dissolution process at the increasing temperature is controlled by the mass transport of dissolved sodium carbonate travelling from particle surface into solvent.The dissolution process at the increasing pH is controlled by the chemical reaction on particle surface.Furthermore,the dissolution rate constant for each single spherical sodium carbonate particle is quantified and the results show that the dissolution rate constant of single spherical sodium carbonate increases significantly with the rising of temperature,but decreases with the increasing of pH conversely.展开更多
Based on X-ray diffraction,optical microscopy and scanning electron microscopy analysis of the Dachang gold ore,it is showed that the sulfide of ore is the main carrier minerals of gold. A majority of gold is embedded...Based on X-ray diffraction,optical microscopy and scanning electron microscopy analysis of the Dachang gold ore,it is showed that the sulfide of ore is the main carrier minerals of gold. A majority of gold is embedded in pyrite and tetrahedrite as the form of inclusion and a small amount intergrowth with pyrite and gangue mineral,occasionally the presence is in form of monomer natural gold. The main factors which influence the recovery rate are sulfide mineral particle size,and the fine grained sulfide is beneficial for the dissociation and flotation of gold bearing minerals. The monomer dissociation degree of gold bearing minerals can reach91. 3%,when the grinding fineness is less than 0. 074 mm and grain level accounts as 80%. It is not conducive to the flotation of sulfide if the grinding fineness is low or high. It is difficult to completely dissociate the monomer if there is a small amount of pyrite and arsenopyrite in the ore. Therefore,before leaching the gold,it must conduct pretreatment to reach the ideal recovery rate of the gold,like roasting oxidation,pressure oxidation and biological oxidation. The fine microscopic gold has little influence on the gold recovery rate.展开更多
文摘This paper,combined algebraical structure with analytical system,has studied the part of theory of C~*-modules over A by using the homolgical methods, where A is a commutative C~*-algebra over complex number field C. That is to say we have not only defined some relevant new concept,but also obtained some results about them.
基金Projects (50821003,50405014) supported by the National Natural Science Foundation of ChinaProjects (10QH1401400,10520705000,10JC1407300) supported by Shanghai Committee of Science and Technology,China+1 种基金Project (NCET-07-0545) supported by Program for New Century Excellent Talents in University,ChinaProject supported by Ford University Research Program
文摘Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT.Meshes containing material data were created with solid elements.Each element represented an individual grain,and the grain orientations were explicitly stored and updated at each increment.Tangential modulus method was employed to calculate the plastic shear strain increment of deformation systems in combination with a hardening law to describe the hardening responses.Both two developed subroutines were applied to simulate the texture evolution during the uniaxial tension of copper(FCC),cold rolling of IF steel(BCC) and uniaxial compression of AZ31 magnesium alloy(HCP).The predicted texture distributions are in qualitative agreement with the experimental results.
基金Supported by the National Natural Science Foundation of China(No.295256O9 and 29736180).
文摘A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.
基金supported by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant No.2011CDB453,2014CFB440)
文摘The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.
基金the National Natural Science Foundation of China (No.90104019).
文摘The presented scheme named M-CAP (Maximum CAPacity) uses the CSI (Channel State Information) and its statistics to deduce an equivalent channel according to which the transmit power is allocated to the subchannels. And then modulation scheme is determined adaptively according to the power allocated to each subchannel. The advantage of the M-CAP scheme is that it combines power allocation and adaptive modulation while maintaining a large capacity. We demonstrate by computer simulations that the proposed M-CAP scheme can significantly improve system performance compared with the traditional schemes.
基金supported by the National Natural Science Foundation of China(21776259)Key Laboratory of Micro-Nano Powder and Advanced Energy Materials of Anhui Higher Education Institutes,Chizhou University~~
文摘In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization.
基金Supported by the Foundation of National Key Laboratory.
文摘Based on propagator method, a fast 2-D Angle-Of-Arrival (AOA) algorithm is proPosed in this paper. The proposed algorithm does not need the Eigen-Value Decomposition (EVD) or Singular Value Decomposition (SVD) of the Sample Covariance Matrix (SCM), thus the fast algorithm has lower computational complexity with insignificant performance degradation when comparing with conventional subspace approaches. Furthermore, the proposed algorithm has no performance degradation. Finally, computer simulations verify the effectiveness of the proposed algorithm.
文摘Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.
基金Project(CL11034)supported by the Training Program of Innovation and Entrepreneurship for Undergraduates of ChinaProject(CSUZC2013033)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(201210533003)supported by National Training Programs of Innovation and Entrepreneurship for Undergraduates,China
文摘Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.
文摘Nano‐catalysis plays a vital role in the chemical transformations and significantly impacts the booming modern chemical industry.The rapid technological enhancements have resulted in serious energy and environmental issues,which are currently spurring the exploration of the novel nano‐catalysts in diverse fields.In order to develop the efficient nano‐catalysts,it is essential to understand their fundamental physicochemical properties,including the coordination structures of the active centers and substrate‐adsorbate interactions.Subsequently,the nano‐catalyst design with precise manipulation at the atomic level can be attained.In this account,we have summarized our extensive investigation of the factors impacting nano‐catalysis,along with the synthetic strategies developed to prepare the nano‐catalysts for applications in electrocatalysis,photocatalysis and thermocatalysis.Finally,a brief conclusion and future research directions on nano‐catalysis have also been presented.
基金the Institute of Particle and Science Engineering,University of Leeds and Procter&Gamble Newcastle Innovation Centre(UK)for partially funding the project
文摘Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlled temperature and p H.The selected sodium carbonate particles are all spherical with the same mass and diameter.The dissolution process is quantified with the measurement of particle diameter from dissolution images.The concentration of dissolved sodium carbonate in solvent is calculated with the measured diameter of particle.Both surface reaction model and mass transport model are implemented to determine the dissolution mechanism and quantify the dissolution rate constant at each experimental condition.According to the fitting results with both two models,it is clarified that the dissolution process at the increasing temperature is controlled by the mass transport of dissolved sodium carbonate travelling from particle surface into solvent.The dissolution process at the increasing pH is controlled by the chemical reaction on particle surface.Furthermore,the dissolution rate constant for each single spherical sodium carbonate particle is quantified and the results show that the dissolution rate constant of single spherical sodium carbonate increases significantly with the rising of temperature,but decreases with the increasing of pH conversely.
文摘Based on X-ray diffraction,optical microscopy and scanning electron microscopy analysis of the Dachang gold ore,it is showed that the sulfide of ore is the main carrier minerals of gold. A majority of gold is embedded in pyrite and tetrahedrite as the form of inclusion and a small amount intergrowth with pyrite and gangue mineral,occasionally the presence is in form of monomer natural gold. The main factors which influence the recovery rate are sulfide mineral particle size,and the fine grained sulfide is beneficial for the dissociation and flotation of gold bearing minerals. The monomer dissociation degree of gold bearing minerals can reach91. 3%,when the grinding fineness is less than 0. 074 mm and grain level accounts as 80%. It is not conducive to the flotation of sulfide if the grinding fineness is low or high. It is difficult to completely dissociate the monomer if there is a small amount of pyrite and arsenopyrite in the ore. Therefore,before leaching the gold,it must conduct pretreatment to reach the ideal recovery rate of the gold,like roasting oxidation,pressure oxidation and biological oxidation. The fine microscopic gold has little influence on the gold recovery rate.