The authors investigated the possible association of -4522C/T variation of adiponectin gene with coronary heart disease (CHD) and type 2 diabetes mellitus (T2DM). Genotyping of SNP --4522C/T in 304 patients with C...The authors investigated the possible association of -4522C/T variation of adiponectin gene with coronary heart disease (CHD) and type 2 diabetes mellitus (T2DM). Genotyping of SNP --4522C/T in 304 patients with CHD, 389 patients with T2DM, and 405 age and sex-matched healthy control subjects was carried out by means of PCR-RFLP approach. No significant difference in the genotype or allele frequencies was found, either between patients with CHD and control subjects, or between patients with T2DM and control subjects. However, in the subgroup analysis, an association of the TAr genotype and T allele with type 2 diabetes combined with obesity (BMI ≥ 25 kg/m2) was found (P = 0.014 and P = 0.034, respectively). Also the homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM patients with T/T genotype was significantly higher than that in T2DM patients carrying C allele (P = 0.0069). The authors' findings for the first time demonstrated that SNP --4522 in the adiponectin gene was associated with T2DM that combined with obesity and higher insulin resistance index in patients with T2DM. This indicated that the variation might associate with an increased susceptibility to type 2 diabetic obesity and insulin resistance. But -4522C/T polymorphism did not contribute to the susceptibility of CHD.展开更多
Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and ...Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and urea-rich wastewater purification;however,it remains a challenge to achieve overall urea electrolysis with high efficiency.Herein,we report a multifunctional electrocatalyst termed as Rh/Ni V-LDH,through integration of nickel-vanadium layered double hydroxide(LDH)with rhodium single-atom catalyst(SAC),to achieve this goal.The electrocatalyst delivers high HER mass activity of0.262 A mg^(-1) and exceptionally high turnover frequency(TOF)of 2.125 s^(-1) at an overpotential of100 m V.Moreover,exceptional activity toward urea oxidation is addressed,which requires a potential of 1.33 V to yield 10 mA cm^(-2),endorsing the potential to surmount the sluggish OER.The splendid catalytic activity is enabled by the synergy of the Ni V-LDH support and the atomically dispersed Rh sites(located on the Ni-V hollow sites)as evidenced both experimentally and theoretically.The selfsupported Rh/Ni V-LDH catalyst serving as the anode and cathode for overall urea electrolysis(1 mol L^(-1) KOH with 0.33 mol L^(-1) urea as electrolyte)only requires a small voltage of 1.47 V to deliver 100 mA cm^(-2) with excellent stability.This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications.展开更多
Mass production of highly efficient,durable,and inexpensive single atomic catalysts is currently the major challenge associated with the oxygen reduction reaction(ORR)for fuel cells.In this study,we develop a general ...Mass production of highly efficient,durable,and inexpensive single atomic catalysts is currently the major challenge associated with the oxygen reduction reaction(ORR)for fuel cells.In this study,we develop a general strategy that uses a simple ultrasonic atomization coupling with pyrolysis and calcination process to synthesize single atomic FeNC catalysts(FeNC SACs)at large scale.The microstructure characterizations confirm that the active centers root in the single atomic Fe sites chelating to the four-fold pyridinic N atoms.The identified specific Fe active sites with the variable valence states facilitate the transfer of electrons,endowing the FeNC SACs with excellent electrochemical ORR activity.The FeNC SACs were used as cathode catalysts in a homemade Zn-air battery,giving an open-circuit voltage(OCV)of 1.43 V,which is substantially higher than that of commercial Pt/C catalysts.This study provides a simple approach to the synthesis of single atomic catalysts at large scale.展开更多
基金the Chinese High Tech Programs (863) from the Ministry of Science and Technology (No. 2002BA- 711A08)the National Natural Science Foundation of China (No. 30671155, and 39993420)+1 种基金Grant FMU-RT002 of Program for Innovative Research Team in Science and Technology in Fujian Province Universitythe Science Foundation from the Depart-ment of Education of Fujian Province (No. JA05251, and JB06215).
文摘The authors investigated the possible association of -4522C/T variation of adiponectin gene with coronary heart disease (CHD) and type 2 diabetes mellitus (T2DM). Genotyping of SNP --4522C/T in 304 patients with CHD, 389 patients with T2DM, and 405 age and sex-matched healthy control subjects was carried out by means of PCR-RFLP approach. No significant difference in the genotype or allele frequencies was found, either between patients with CHD and control subjects, or between patients with T2DM and control subjects. However, in the subgroup analysis, an association of the TAr genotype and T allele with type 2 diabetes combined with obesity (BMI ≥ 25 kg/m2) was found (P = 0.014 and P = 0.034, respectively). Also the homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM patients with T/T genotype was significantly higher than that in T2DM patients carrying C allele (P = 0.0069). The authors' findings for the first time demonstrated that SNP --4522 in the adiponectin gene was associated with T2DM that combined with obesity and higher insulin resistance index in patients with T2DM. This indicated that the variation might associate with an increased susceptibility to type 2 diabetic obesity and insulin resistance. But -4522C/T polymorphism did not contribute to the susceptibility of CHD.
基金finically supported by the National Key R&D Program of China(2017YFE0120500)the National Natural Science Foundation of China(51972129,51702150,and 21725102)+2 种基金the Key Research and Development Program of Hubei(2020BAB079)Bintuan Science and Technology Program(2020DB002,and 2022DB009)the Science and Technology Innovation Committee Foundation of Shenzhen(JCYJ20210324141613032 and JCYJ20190809142019365)。
文摘Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and urea-rich wastewater purification;however,it remains a challenge to achieve overall urea electrolysis with high efficiency.Herein,we report a multifunctional electrocatalyst termed as Rh/Ni V-LDH,through integration of nickel-vanadium layered double hydroxide(LDH)with rhodium single-atom catalyst(SAC),to achieve this goal.The electrocatalyst delivers high HER mass activity of0.262 A mg^(-1) and exceptionally high turnover frequency(TOF)of 2.125 s^(-1) at an overpotential of100 m V.Moreover,exceptional activity toward urea oxidation is addressed,which requires a potential of 1.33 V to yield 10 mA cm^(-2),endorsing the potential to surmount the sluggish OER.The splendid catalytic activity is enabled by the synergy of the Ni V-LDH support and the atomically dispersed Rh sites(located on the Ni-V hollow sites)as evidenced both experimentally and theoretically.The selfsupported Rh/Ni V-LDH catalyst serving as the anode and cathode for overall urea electrolysis(1 mol L^(-1) KOH with 0.33 mol L^(-1) urea as electrolyte)only requires a small voltage of 1.47 V to deliver 100 mA cm^(-2) with excellent stability.This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications.
基金the National Natural Science Foundation of China(NSFC,51971029)the NSFC-BRICS STI Framework Program(51861145309)+4 种基金the National S&T Major Project(2018ZX10301201)the Joint Research Project of University of Science and Technology Beijing&Taipei University of Technology(TW2018007)the“1125”Zhihui Zhengzhou Talent Project of Henan Province(39080070)the Fundamental Research Funds for the Central Universities(FRF-BR-15-027A)the fund supports from the“100 talent plan”fund of Fujian province(Contract No:2017-802)。
文摘Mass production of highly efficient,durable,and inexpensive single atomic catalysts is currently the major challenge associated with the oxygen reduction reaction(ORR)for fuel cells.In this study,we develop a general strategy that uses a simple ultrasonic atomization coupling with pyrolysis and calcination process to synthesize single atomic FeNC catalysts(FeNC SACs)at large scale.The microstructure characterizations confirm that the active centers root in the single atomic Fe sites chelating to the four-fold pyridinic N atoms.The identified specific Fe active sites with the variable valence states facilitate the transfer of electrons,endowing the FeNC SACs with excellent electrochemical ORR activity.The FeNC SACs were used as cathode catalysts in a homemade Zn-air battery,giving an open-circuit voltage(OCV)of 1.43 V,which is substantially higher than that of commercial Pt/C catalysts.This study provides a simple approach to the synthesis of single atomic catalysts at large scale.