针对高光谱影像分类中的深度学习模型设计问题,提出了一种面向高光谱影像分类的网络结构自动搜索方法。该方法首先利用可微分结构搜索技术在源高光谱数据集上进行网络结构搜索,然后采用堆叠单元的形式构建深度网络模型,最后利用目标高...针对高光谱影像分类中的深度学习模型设计问题,提出了一种面向高光谱影像分类的网络结构自动搜索方法。该方法首先利用可微分结构搜索技术在源高光谱数据集上进行网络结构搜索,然后采用堆叠单元的形式构建深度网络模型,最后利用目标高光谱影像对模型进行分类性能评估。该方法仅在源高光谱数据集上进行一次网络结构搜索,得到的深度网络模型即可应用于其他目标高光谱影像的分类任务,能够有效提高模型利用率。为了提高自动搜索得到的模型的泛化能力和分类精度,采用多源多分辨率的高光谱影像构建源数据集,并引入部分通道连接操作提高搜索效率。试验表明,该方法能够自动搜索出适合高光谱影像分类任务且具备一定通用性的深度网络模型,该模型能够取得较常规深度学习模型更为优异的分类效果,在University of Pavia、Indian Pines、Salinas和Houston 2018这4个目标高光谱影像上分别取得了98.15%、98.74%、97.30%和74.47%的总体分类精度。展开更多
文摘针对高光谱影像分类中的深度学习模型设计问题,提出了一种面向高光谱影像分类的网络结构自动搜索方法。该方法首先利用可微分结构搜索技术在源高光谱数据集上进行网络结构搜索,然后采用堆叠单元的形式构建深度网络模型,最后利用目标高光谱影像对模型进行分类性能评估。该方法仅在源高光谱数据集上进行一次网络结构搜索,得到的深度网络模型即可应用于其他目标高光谱影像的分类任务,能够有效提高模型利用率。为了提高自动搜索得到的模型的泛化能力和分类精度,采用多源多分辨率的高光谱影像构建源数据集,并引入部分通道连接操作提高搜索效率。试验表明,该方法能够自动搜索出适合高光谱影像分类任务且具备一定通用性的深度网络模型,该模型能够取得较常规深度学习模型更为优异的分类效果,在University of Pavia、Indian Pines、Salinas和Houston 2018这4个目标高光谱影像上分别取得了98.15%、98.74%、97.30%和74.47%的总体分类精度。