In this paper, we prove the existence in H+^2, an incomplete metric subspace of H^2×H^2×H^2, of global solutions to the system for a one-dimensional non-monotone fluid in bounded domainΩ=(0,1). The resul...In this paper, we prove the existence in H+^2, an incomplete metric subspace of H^2×H^2×H^2, of global solutions to the system for a one-dimensional non-monotone fluid in bounded domainΩ=(0,1). The results in this paper have improved those previously related results.展开更多
We consider a one-dimensional continuous model of nutron star, described by a compressible thermoviscoelastic system with a non-monotone equation of state, due to the effective Skyrme nuclear interaction between parti...We consider a one-dimensional continuous model of nutron star, described by a compressible thermoviscoelastic system with a non-monotone equation of state, due to the effective Skyrme nuclear interaction between particles. We will prove that, despite a possible destabilizing influence of the pressure, which is non-monotone and not always positive, the presence of viscosity and a sufficient thermal dissipation describe the global existence of solutions in H^4 with a mixed free boundary problem for our model.展开更多
The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that...The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that increasing the model free parameter α, shock Mach number, and the initial density discontinuity makes the mix length and fraction of mixing particle increase, resulting in the lower shock temperatures compared with the results of single-fluid model without mixing. Recent high-compressibility direct-drive spherical implosions on OMEGA are simulated by the interpenetration mix modal. The calculations with atomic mixing between fuel and shell match quite well with the observations. Without considering any mixing, the calculated neutron yields and ion temperatures are overpredicted; while inclusion of the interpenetration mix model with the adjustable parameter α could fit the simulated neutron yields and ion temperatures well with experimental data.展开更多
Transports of air particulate matters(PM) from face sources in the atmospheric boundary layer(ABL) are investigated by the Eulerian single fluid model and the Lagrangian trajectory method,respectively.Large eddy simul...Transports of air particulate matters(PM) from face sources in the atmospheric boundary layer(ABL) are investigated by the Eulerian single fluid model and the Lagrangian trajectory method,respectively.Large eddy simulation is used to simulate the fluid phase for high accuracy in both two approaches.The mean and fluctuating PM concentrations,as well as instantaneous PM distributions at different downstream and height positions,are presented.Higher mean and fluctuating particle concentrations are predicted by the Eulerian approach than the Lagrangian one.For the Lagrangian method,PM distributions cluster near the ground-wall because of the preferential dispersion of inertial particles by turbulence structures in the ABL,while it cannot be obtained by the Eulerian single fluid method,because the two-phase velocity differences are neglected in the Eulerian method.展开更多
The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and inte...The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path A, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/A is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results.展开更多
文摘In this paper, we prove the existence in H+^2, an incomplete metric subspace of H^2×H^2×H^2, of global solutions to the system for a one-dimensional non-monotone fluid in bounded domainΩ=(0,1). The results in this paper have improved those previously related results.
文摘We consider a one-dimensional continuous model of nutron star, described by a compressible thermoviscoelastic system with a non-monotone equation of state, due to the effective Skyrme nuclear interaction between particles. We will prove that, despite a possible destabilizing influence of the pressure, which is non-monotone and not always positive, the presence of viscosity and a sufficient thermal dissipation describe the global existence of solutions in H^4 with a mixed free boundary problem for our model.
基金Supported by the National Basic Research Program of China under Grant No.2007CB815100the National Natural Science Foundation of China under Grant Nos.10775020 and 10935003
文摘The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that increasing the model free parameter α, shock Mach number, and the initial density discontinuity makes the mix length and fraction of mixing particle increase, resulting in the lower shock temperatures compared with the results of single-fluid model without mixing. Recent high-compressibility direct-drive spherical implosions on OMEGA are simulated by the interpenetration mix modal. The calculations with atomic mixing between fuel and shell match quite well with the observations. Without considering any mixing, the calculated neutron yields and ion temperatures are overpredicted; while inclusion of the interpenetration mix model with the adjustable parameter α could fit the simulated neutron yields and ion temperatures well with experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50876053 and 11132005)Opening fund of State of Key Laboratory of Nonlinear Mechanics
文摘Transports of air particulate matters(PM) from face sources in the atmospheric boundary layer(ABL) are investigated by the Eulerian single fluid model and the Lagrangian trajectory method,respectively.Large eddy simulation is used to simulate the fluid phase for high accuracy in both two approaches.The mean and fluctuating PM concentrations,as well as instantaneous PM distributions at different downstream and height positions,are presented.Higher mean and fluctuating particle concentrations are predicted by the Eulerian approach than the Lagrangian one.For the Lagrangian method,PM distributions cluster near the ground-wall because of the preferential dispersion of inertial particles by turbulence structures in the ABL,while it cannot be obtained by the Eulerian single fluid method,because the two-phase velocity differences are neglected in the Eulerian method.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11105013,10935003,11275031,11205017,and11075023,the National Basic Research Program of China under Grant No.2013CB834110,the National High-Tech R&D Program(863 Program)under Grant No.2012AA01A303
文摘The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path A, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/A is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results.