为了从宏观-细观角度探究不同形状矿石颗粒的破碎强度、破碎模式、碎块尺寸分布及断口表面形貌等破碎特性,首先,基于三维扫描技术重构矿石颗粒图像,获取颗粒形状参数;其次,定量表征矿石颗粒外部宏观层次轮廓形态及细观层次凹凸度;最后,...为了从宏观-细观角度探究不同形状矿石颗粒的破碎强度、破碎模式、碎块尺寸分布及断口表面形貌等破碎特性,首先,基于三维扫描技术重构矿石颗粒图像,获取颗粒形状参数;其次,定量表征矿石颗粒外部宏观层次轮廓形态及细观层次凹凸度;最后,对扫描后的几何平均粒径范围为20~45 mm的不规则磁铁矿矿石颗粒进行单颗粒压缩破碎试验,并重构颗粒断口表面以定量探究断面粗糙度的影响因素。研究结果表明:矿石颗粒的破碎强度分布可用Weibull函数模型拟合,其中Weibull参数m为2.17,特征强度F0为7.20 k N;矿石颗粒破碎模式分为边部磨损、中部破碎、贯通缝破坏、随机开裂4种类型;中部破碎为主要破碎模式,占比为0.433,“第一尺寸碎块”及“第二尺寸碎块”质量分数分布均符合正态分布,均值分别在0.65和0.30左右;但当颗粒3个主维度长度接近时,颗粒不容易发生中部破碎。以分形维数D定量表征颗粒破碎断口表面粗糙度,当截面面积大于36 mm^(2)时,分形维数D更稳定。球度显著影响颗粒破碎断口表面平均分形维数D,扁平度、能量、棱角度及等效粒径4种因素影响程度次之且相近,延伸率的影响不存在统计学差异。展开更多
文摘为了从宏观-细观角度探究不同形状矿石颗粒的破碎强度、破碎模式、碎块尺寸分布及断口表面形貌等破碎特性,首先,基于三维扫描技术重构矿石颗粒图像,获取颗粒形状参数;其次,定量表征矿石颗粒外部宏观层次轮廓形态及细观层次凹凸度;最后,对扫描后的几何平均粒径范围为20~45 mm的不规则磁铁矿矿石颗粒进行单颗粒压缩破碎试验,并重构颗粒断口表面以定量探究断面粗糙度的影响因素。研究结果表明:矿石颗粒的破碎强度分布可用Weibull函数模型拟合,其中Weibull参数m为2.17,特征强度F0为7.20 k N;矿石颗粒破碎模式分为边部磨损、中部破碎、贯通缝破坏、随机开裂4种类型;中部破碎为主要破碎模式,占比为0.433,“第一尺寸碎块”及“第二尺寸碎块”质量分数分布均符合正态分布,均值分别在0.65和0.30左右;但当颗粒3个主维度长度接近时,颗粒不容易发生中部破碎。以分形维数D定量表征颗粒破碎断口表面粗糙度,当截面面积大于36 mm^(2)时,分形维数D更稳定。球度显著影响颗粒破碎断口表面平均分形维数D,扁平度、能量、棱角度及等效粒径4种因素影响程度次之且相近,延伸率的影响不存在统计学差异。