For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derive...For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.展开更多
t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the ve...t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.展开更多
The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array ...The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.展开更多
A modified Gauss-Markov model with weighted constraints was constructed by combining satellite altimeter and tide gauge records. Vertical motion rates of nine tide gauge stations around the Bohal Sea and Yellow Sea ar...A modified Gauss-Markov model with weighted constraints was constructed by combining satellite altimeter and tide gauge records. Vertical motion rates of nine tide gauge stations around the Bohal Sea and Yellow Sea are estimated. This is the first time systematic estimates have been derived in this region. Downward trends were seen at the six tide gauge stations located at Tanggu, Longkou, Laohutan, Bayuquan, Xiaochangshan, and Yantai; with vertical motion rates of-1.82±0.50, -1.65±0.46, -0.88±0.42, -0.58±0.62, -0.13±0.43, and -0.01±0.43 mm/yr, respectively. Upward trends were seen at the three tide gauge stations located at Qinhuangdao, Huludao and Chengshantou; with vertical motion rates of 1.12±0.46, 0.55±0.49 and 0.26±0.44 mm/yr, respectively. There was significant subsidence in Tanggu and Longkou, and a rising trend in Qinhuangdao. According to our results, the rate of sea level rise calculated from these tide gauge records can be improved using a more accurate measurement of the land elevation accounting for lifting or subsidence. The model derived can be used to estimate vertical motions of tide gauge stations, and can be widely applied to revise the benchmark levels of tide gauges.展开更多
文摘For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.
基金Supported by the National Natural Science Foundation of China (No. 40637034), the National High Technology Research and Development Program of China(No. 2006AA12Z309, 2006AAO9Z138, 2007AA12Z346).
文摘t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.
文摘The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.
基金supported by the National Natural Science Foundation of China(Grant Nos.4140603241206021&41376014)+4 种基金the National Basic Research Program of China(Grant No.2012CB955601)the National Key Technology R&D Program of China(Grant No.2014BAB12B02)the Key Technology R&D Program of Tianjin(Grant No.14ZCZDSF00012)the Open Fund of the State Key Laboratory of Satellite Ocean Environment Dynamics at the Second Institute of OceanographySOA(Grant No.SOED1305)
文摘A modified Gauss-Markov model with weighted constraints was constructed by combining satellite altimeter and tide gauge records. Vertical motion rates of nine tide gauge stations around the Bohal Sea and Yellow Sea are estimated. This is the first time systematic estimates have been derived in this region. Downward trends were seen at the six tide gauge stations located at Tanggu, Longkou, Laohutan, Bayuquan, Xiaochangshan, and Yantai; with vertical motion rates of-1.82±0.50, -1.65±0.46, -0.88±0.42, -0.58±0.62, -0.13±0.43, and -0.01±0.43 mm/yr, respectively. Upward trends were seen at the three tide gauge stations located at Qinhuangdao, Huludao and Chengshantou; with vertical motion rates of 1.12±0.46, 0.55±0.49 and 0.26±0.44 mm/yr, respectively. There was significant subsidence in Tanggu and Longkou, and a rising trend in Qinhuangdao. According to our results, the rate of sea level rise calculated from these tide gauge records can be improved using a more accurate measurement of the land elevation accounting for lifting or subsidence. The model derived can be used to estimate vertical motions of tide gauge stations, and can be widely applied to revise the benchmark levels of tide gauges.