期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
基于WGAN-GP和高效卷积块注意力机制IPOA-ICNN的变压器故障诊断
1
作者 鲍克勤 谈浩冬 《水电能源科学》 北大核心 2024年第10期190-195,共6页
针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯... 针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯度惩罚生成对抗网络(WGAN-GP),对不平衡的变压器数据样本进行训练以生成合成样本,用于数据增强,并采用方差分析法选取关联性强的气体特征参量;其次,使用残差和高效卷积块注意力机制模块对重构的平衡样本进行更为细节的特征提取,以实现故障诊断网络的分类;最后,利用改进的鹈鹕优化算法(IPOA)对ICNN参数进行寻优。算例对比分析表明,所提算法的故障诊断性能具备更高的精确度和稳定性,验证了所提模型故障诊断分类性能的有效性。 展开更多
关键词 变压器故障诊断 数据增强 高效卷积注意力机制 鹈鹕优化算法
原文传递
基于卷积—反残差和组合注意力机制的航天器多余物检测 被引量:1
2
作者 花诗燕 李大伟 +1 位作者 贾书一 汪俊 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期53-66,共14页
航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注... 航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注意力机制的航天器密闭电子设备多余物检测网络RPDN。首先,网络通过构建卷积—反残差模块,保证了多余物细粒度特征的完整性;其次,设计组合注意力机制,增强了多余物特征的表征能力;最后,结合多尺度特征融合模块与目标检测层从多维度进行目标预测。实验结果表明RPDN在各项评价指标上均取得了良好的效果,mAP达到92.16%,检测效率达到了13FPS,实现了航天器密闭电子设备内腔多余物高效、精准检测。 展开更多
关键词 航天器 密闭电子设备 多余物检测 卷积—反残差模块 组合注意力机制
下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析
3
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积注意力模块-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
原文传递
基于集成改进卷积注意力块的SAR图像目标分类算法
4
作者 孙靖森 李宗豫 +3 位作者 杨森 钟芝怡 艾加秋 史骏 《海军航空大学学报》 2024年第4期445-452,共8页
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问... 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问题,文章提出了1种基于集成改进卷积注意力块(Improved Convolutional Block Attention Module,ICBAM)的SAR图像目标分类算法ICBAM_CNN。首先,该模块通过引入方差参数至传统CBAM模块中,设计了1种改进的CBAM注意力机制,有助于分类识别网络更好地学习SAR图像不同目标卷积层输出与通道注意力之间的差异信息,提升不同SAR目标特征的可分离性;然后,ICBAM设计了1种中心坐标注意力机制,能更好地捕捉SAR图像中目标的中心分布特征,有效抑制杂波对SAR目标分类影像的干扰;最后,为了提高效率,将改进后的ICBAM模块集成到CNN网络中,实现SAR图像目标分类。ICBAM_CNN深度融合了SAR图像目标的多层级特征,提升了SAR目标特征的可分离性,可实现SAR图像目标的高精度、高效率识别分类。通过MSTAR数据集进行实验,结果表明,相比于传统CBAM方法,改进ICBAM方法的精确率提升了2.44%,召回率提升了2.24%,F1-score提升了2.34%。 展开更多
关键词 SAR图像目标分类 改进卷积注意力 集成Icbam的CNN网络 中心坐标注意力机制 多层级特征融合
下载PDF
基于注意力机制和迁移学习的服装分类方法
5
作者 陈金广 黄晓菊 马丽丽 《西安工程大学学报》 CAS 2024年第3期109-116,共8页
针对服装图像分类效率低、准确率不高等问题,提出了一种基于注意力机制和迁移学习的服装图像分类方法。主要采用预训练的ResNet50网络模型在服装数据集上进行迁移学习,以降低对数据集的依赖,并减少网络训练时间;通过几何变换和颜色抖动... 针对服装图像分类效率低、准确率不高等问题,提出了一种基于注意力机制和迁移学习的服装图像分类方法。主要采用预训练的ResNet50网络模型在服装数据集上进行迁移学习,以降低对数据集的依赖,并减少网络训练时间;通过几何变换和颜色抖动2种数据增强手段处理数据集,提高模型的泛化能力;以ResNet50为基础网络,加入卷积注意力机制模块(convolutional block attention module, CBAM),依次从通道和空间2个维度提高对服装不同区域的关注度,增强了特征表达能力。在CD和IDFashion两类背景干扰信息不同的数据集上进行验证,实验结果表明:所提出的模型能够提取更多服装特征信息,在IDFashion数据集的平均分类准确率为95.60%,分别高于ResNet50、ResNet50+STN和ResNet50+ECA模型6.65%、6.69%、6.62%,一定程度上提高了服装图像分类的准确率和效率。 展开更多
关键词 服装图像分类 ResNet50 卷积注意力机制模块(cbam) 注意力机制 迁移学习
下载PDF
基于融合注意力机制深度网络的半色调图像分类
6
作者 李梅 许宝卉 +1 位作者 刘琦 王新海 《运城学院学报》 2024年第3期55-60,共6页
现有的半色调图像分类方法存在着识别半色调图像类型较少、分类准确率较低等问题。为了进一步提高半色调图像的分类准确率,本文提出一种基于融合注意力机制深度网络的半色调图像分类方法。首先,应用稠密残差块深度提取半色调图像信息,... 现有的半色调图像分类方法存在着识别半色调图像类型较少、分类准确率较低等问题。为了进一步提高半色调图像的分类准确率,本文提出一种基于融合注意力机制深度网络的半色调图像分类方法。首先,应用稠密残差块深度提取半色调图像信息,并应用通道注意力机制提取不同通道间的半色调图像噪点分布特征;然后,应用空间注意力机制提取不同通道不同空间下半色调图像噪点之间的关系;最后,应用分类器对识别到的半色调图像噪点分布特征进行分类,从而实现对半色调图像的分类。实验结果表明,运用基于融合注意力机制深度网络的半色调分类方法可以以99.72%的准确率、0.9971的F1分数实现14类半色调图像的分类。与其他方法相比,本文提出的方法在半色调图像分类准确率上提高了0.14%~0.24%,在F1分数上提高了0.0014。该方法可以以最高的准确率实现最多类型的半色调图像的分类。 展开更多
关键词 图像分类 半色调图像 稠密残差 注意力机制 卷积网络
下载PDF
基于注意力机制和Mogrifier LSTNet的道路交通占有率预测
7
作者 秦喜文 潘星宇 +2 位作者 张斯琪 石红玉 董小刚 《长春工业大学学报》 CAS 2024年第3期199-207,共9页
提出一种改进的LSTNet深度学习框架用于交通占有率数据预测。采用不同大小的卷积核来捕捉时间序列数据中不同时间范围内的模式和趋势,并融合CBAM注意力机制可以在通道维度和空间维度上自适应地调整特征的权重。通过引入Mogrifier机制多... 提出一种改进的LSTNet深度学习框架用于交通占有率数据预测。采用不同大小的卷积核来捕捉时间序列数据中不同时间范围内的模式和趋势,并融合CBAM注意力机制可以在通道维度和空间维度上自适应地调整特征的权重。通过引入Mogrifier机制多次迭代交替更新LSTM的输入门和遗忘门的权重,以更好地捕捉序列数据中的长期依赖关系。而AR模型充分考虑了数据集的自相关性帮助模型更好地理解历史信息。实验结果表明,提出的模型相对绝对值误差为0.3497,明显优于其他模型,能够有效提高交通占有率的准确预测。 展开更多
关键词 LSTNet模型 卷积神经网络 cbam注意力机制 Mogrifier LSTM 交通占有率预测
下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计
8
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积 混合空洞卷积 通道注意力机制 转置卷积
下载PDF
融合动态场景感知和注意力机制的声学回声消除算法
9
作者 许春冬 黄乔月 +1 位作者 王磊 徐锦武 《信号处理》 CSCD 北大核心 2024年第2期396-405,共10页
在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统... 在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统回声消除系统存在去回声效果不明显、存在非线性回声残留以及无法实时处理回声等问题。因此,为解决上述存在问题,提出了一种动态场景感知模块(Dynamic scene perception module,DSPM)和全局注意力机制(Global attention mechanism,GAM)相结合的声学回声消除算法。该算法以卷积循环网络(Convolutional recurrent network,CRN)作为基线模型,提取语音信号的序列特征;首先,在其编码器中引入DSPM模块替换原因果卷积,根据场景动态分配卷积内核数量,加强模型的自适应性;其次,在编码器最后两层中分别引入GAM模块,放大空间通道间关系以及统筹全局交互,提升对语音信号特征的提取能力以及消除回声的性能;最后,通过将MSE损失函数和HuberLoss损失函数线性相加生成一种新的损失函数——MSE-HuberLoss,进一步提高模型的鲁棒性。实验结果表明,提出的GAM-DSPM-CRN模型的回声消除性能优秀,且获得较基线模型更加清晰的重构语音信号;在双端通话环境下,提出的GAM-DSPM-CRN模型声学回声消除算法较其他对比算法性能有较大提升;在Microsoft AEC Challenges数据集上,MOS、ERLE和STOI的得分分别达到了4.09、57.43和0.78。 展开更多
关键词 声学回声消除 动态场景感知模块 全局注意力机制 卷积循环网络 联合损失函数
下载PDF
基于注意力机制的U-Net叶片缺陷图像分割
10
作者 祁雷 李宁 +2 位作者 梁伟 王峥 刘子梁 《中国安全科学学报》 CAS CSCD 北大核心 2024年第5期139-146,共8页
为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分... 为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分,在编码-解码之间的跳跃模块加入卷积注意力模块。通过对微小缺陷信息选取加强全局权重,使用扩张卷积增强网络特征,采用VGG16预训练模型实现迁移学习。开展Focal与Dice结合的混合损失函数验证,对比分析DeeplabV3+、PSPnet、HRNet、U-Net这4种模型。结果表明:对于叶片缺陷数据集,改进的U-Net网络模型对叶片缺陷的分类和分割任务具有更高的精度,均交并比、均像素精度和召回率等指标值分别为83.60%、92.84%和88.50%。改进U-Net网络的均交并比值比DeeplabV3+模型高13.98%,比标准U-Net模型高9.38%,能够提高叶片缺陷检测的灵敏度,有效降低检测结果的误报警率,有助于准确检测风机叶片缺陷。 展开更多
关键词 注意力机制 U-Net网络 风机叶片缺陷 图像分割 语义分割 迁移学习 卷积注意力模块(cbam)
原文传递
基于注意力机制轻量化模型的植物病害识别方法
11
作者 苏航 陈旭昊 +3 位作者 寿德荣 张朝阳 许彪 孙丙宇 《江苏农业学报》 CSCD 北大核心 2024年第8期1389-1399,共11页
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可... 针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取。为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块。此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取。最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet。为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Transformer、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果。 展开更多
关键词 模型剪枝 卷积注意力模块(cbam)注意力机制 卷积核倒置残差结构(IRBCKS)模块 植物病害 轻量化网络
下载PDF
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:2
12
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积注意力模块 双向特征金字塔网络
下载PDF
基于注意力机制的艾德莱斯绸纹饰图案分割研究
13
作者 黄凯茜 安娃 《包装工程》 CAS 北大核心 2024年第22期420-426,共7页
目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出... 目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出图像的语义特征信息。利用通道注意力模块和位置注意力模块,分别对艾德莱斯绸纹饰图像展开学习,得到维度完全相同的特征图。将两个模块特征图融合后与FCN模型输出图像再次融合,得到艾德莱斯绸纹饰图像的特征提取结果,选取图像中的感兴趣区域,完成对艾德莱斯绸纹饰图案的分割。结论实验结果表明,所提方法取得了精准度较高的分割结果,分割图像边缘清晰,没有出现错分割和漏分割的情况,分割结果总体上较为理想。 展开更多
关键词 注意力机制 艾德莱斯绸纹饰 图案分割 语义特征信息 卷积神经网络 通道注意力模块
下载PDF
基于多注意力机制与跨特征融合的语义分割算法
14
作者 闵莉 董冰洁 安冬 《计算机工程》 CAS CSCD 北大核心 2024年第8期282-289,共8页
图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的... 图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的图像语义分割算法。该算法选取轻量级网络MobileNetv2作为主干,以缩短训练时间;通过优化空洞空间金字塔池化模块中空洞卷积的膨胀率,改善多尺度语义特征的提取效果,提高模型对小目标的分割能力,并将兼具通道与空间的卷积块注意力机制引入其中,更加关注对分割起决定作用的区域,从而加强对目标边界的提取;在编码器中设计跨特征融合模块,以聚合不同层次特征图的空间信息和语义信息,提高网络学习特征的能力;在编码和解码部分均引入坐标注意力机制,以分解全局平均池化的方式将位置信息嵌入到通道中,从而得到分割目标的准确位置。实验结果表明,所提算法F3crc-DeepLabv3+在PASCAL VOC 2012增强数据集和Cityspaces数据集上的平均交并比分别达到了75.06%和73.06%,平均精度分别达到了84.16%和82.05%,精确率分别达到了86.18%和85.43%,训练时间分别为10 h和13.8 h,具有较优的网络性能。 展开更多
关键词 语义分割 DeepLabv3+网络 MobileNetv2网络 坐标注意力 卷积注意力模块 跨特征融合
下载PDF
基于注意力机制的多尺度道路损伤检测算法研究
15
作者 武兵 田莹 《图学学报》 CSCD 北大核心 2024年第4期770-778,共9页
路损伤检测是道路养护与修复的一项重要任务。现有的道路损伤检测方式以传统的人工检测为主,人工检测需要投入大量的人力和物力,检测效率低,无法适应当前道路发展的需求。进而提出了一种改进的多尺度道路损伤检测算法YOLOv8-RDD。首先,Y... 路损伤检测是道路养护与修复的一项重要任务。现有的道路损伤检测方式以传统的人工检测为主,人工检测需要投入大量的人力和物力,检测效率低,无法适应当前道路发展的需求。进而提出了一种改进的多尺度道路损伤检测算法YOLOv8-RDD。首先,YOLOv8-RDD算法在C2f模块中使用可变形卷积(DCN)建了全新的C2f_DCN模块,扩大感受野的有效范围,更准确地定位目标对象的边界和位置,有助于提升对目标的识别和定位能力;其次,网络末端设计了全新的SPPF_GS模块,在SPPF模块中引入了自注意力机制(SA)和幻影卷积Ghost模块,并重新优化了池化核的大小,更好的处理长距离依赖性和捕获全局信息;最后,在Neck中引入坐标注意力机制(CA),强化模型的特征提取能力,减少冗余信息。实验结果表明,改进后的算法在RDD2022数据集上面的精确度(Precision)为61.1%、召回率(Recall)为55.5%,平均精度(mAP)为56.2%,相较于YOLOv8n算法分别提高了4.6%、4.7%和5.2%,在道路损伤的目标检测上取得了优异的效果。 展开更多
关键词 道路损伤检测 YOLOv8 可变形卷积 注意力机制 Ghost模块
下载PDF
基于注意力机制的轻量级矿井钢丝绳断丝检测算法研究
16
作者 方旭东 于正 +2 位作者 杨发展 周攀搏 袁广振 《中国煤炭》 北大核心 2024年第8期152-164,共13页
立井提升系统作为煤矿生产中的主要运输设备,其核心构件钢丝绳常因工作负荷大、受到腐蚀、磨损等原因而产生断丝引发事故。传统的立井提升机钢丝绳检测算法存在效率低、劳动强度大、智能化程度差和准确率低等问题。基于此,提出一种改进Y... 立井提升系统作为煤矿生产中的主要运输设备,其核心构件钢丝绳常因工作负荷大、受到腐蚀、磨损等原因而产生断丝引发事故。传统的立井提升机钢丝绳检测算法存在效率低、劳动强度大、智能化程度差和准确率低等问题。基于此,提出一种改进YOLOv5s模型,并基于改进的模型进行矿井钢丝绳断丝检测。首先,设计Swiener滤波算法进行钢丝绳图像运动模糊修复,抑制噪声干扰;其次,在特征提取阶段,引入RFC3轻量化模块降低模型可训练参数,提升钢丝绳检测速度;第三,提出CBAM R注意力机制,增强模型对小断口断丝的检测能力;最后,引入Focal EIoU损失函数,提高模型对小断口断丝的检测精度并加速模型收敛。研究结果表明:所提出的基于注意力机制矿用钢丝绳断丝检测算法(CTR YOLO)可以更好地满足实际应用需求,减少了误检、漏检导致的人力成本浪费及安全事故的发生。 展开更多
关键词 钢丝绳检测 YOLOv5s模型 Swiener滤波算法 cbam R注意力机制 轻量化模块
下载PDF
基于注意力机制的三维模型特征提取
17
作者 王欢欢 李舒晴 《现代计算机》 2024年第4期48-52,共5页
目前在基于视图的三维模型检索技术中,对多视图特征提取的大多方法,关注于视图的全局特征信息而忽略了对视图局部特征信息和多视图之间的相关性的探究。针对此问题提出一种新的特征提取方法,利用深度学习中的卷积神经网络,并结合注意力... 目前在基于视图的三维模型检索技术中,对多视图特征提取的大多方法,关注于视图的全局特征信息而忽略了对视图局部特征信息和多视图之间的相关性的探究。针对此问题提出一种新的特征提取方法,利用深度学习中的卷积神经网络,并结合注意力机制提取特征,以提升其判别性。方法在ModelNet40上进行实验分析,将三维模型的多个视图作为输入,在网络层中加入注意力模块进行特征提取分类,结果表明,该方法在分类准确度方面优于已有的典型算法。 展开更多
关键词 三维模型检索 卷积神经网络 注意力机制 cbam
下载PDF
引入卷积块注意力模块的YOLOv5网络在地铁车辆一系弹簧断裂检测中的应用
18
作者 江现昌 邹庆春 +1 位作者 李翔泽 王静 《铁道技术监督》 2023年第10期29-33,共5页
作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的... 作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的效果。针对这一问题,在YOLOv5网络的基础上加以改进,加入更小的初始检测锚框,并且在主干网络加入空间和通道注意力模块。对比试验结果表明,改进后平均准确率提高3%,有效提高了小目标的检测能力。 展开更多
关键词 地铁动车组 转向架 一系弹簧 YOLOv5算法 卷积注意力模块 注意力机制 目标检测
下载PDF
基于改进残差和注意力的CT肺癌辅助诊断
19
作者 谷宇 迟靖千 +3 位作者 张宝华 杨立东 李建军 唐思源 《传感器与微系统》 CSCD 北大核心 2024年第9期30-34,共5页
为了提高结节检测和肺癌诊断的性能,本文提出一种改进的卷积神经网络(CNN)模型用于这2个步骤的结节特征提取。该模型以一种改进U-Net网络作为基础网络,并引入了ResNeXt模块和注意力机制,在保持模型复杂度的同时,提高网络学习多种形状和... 为了提高结节检测和肺癌诊断的性能,本文提出一种改进的卷积神经网络(CNN)模型用于这2个步骤的结节特征提取。该模型以一种改进U-Net网络作为基础网络,并引入了ResNeXt模块和注意力机制,在保持模型复杂度的同时,提高网络学习多种形状和大小的结节特征的能力。实验结果表明:该模型在DSB数据集上表现良好,结节检测的灵敏度和特异性分别达到了99.15%和99.99%,肺癌诊断的准确率和AUC值分别达到了80.43%和0.86。可见,本文方法对于多种多样的结节特征具有高度敏感性,具有一定的临床价值。 展开更多
关键词 肺结节辅助检测 肺癌辅助诊断 CT图像 卷积神经网络 ResNeXt模块 注意力机制
下载PDF
多尺度注意力融合与视觉Transformer方法优化的电阻抗层析成像深度学习方法
20
作者 王琦 张涛 +2 位作者 徐超炜 卢梦凡 王子辰 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期52-63,共12页
电阻抗层析成像(EIT)具有显著的可视化和非侵入性等特点,在工业和生物医学工程领域展现了其广阔的应用潜力。由于其逆问题存在高度非线性和病态性特点,导致了数值成像方法在空间分辨率上的局限性,尤其是在多相介质分布情况下,现有EIT技... 电阻抗层析成像(EIT)具有显著的可视化和非侵入性等特点,在工业和生物医学工程领域展现了其广阔的应用潜力。由于其逆问题存在高度非线性和病态性特点,导致了数值成像方法在空间分辨率上的局限性,尤其是在多相介质分布情况下,现有EIT技术在成像过程中出现边界失真和电导率误差,从而影响最终的成像精度。本文提出了一种基于卷积注意力机制的U型深度成像方法——MAT-UNet,将卷积块注意力模块(CBAM)与U-Net结构相结合,在特征提取与融合过程中嵌入卷积块注意力模块,以增强模型的注意力定向和特征表征能力,同时跳跃连接引入了压缩-激励(SE)注意力机制与视觉Transformer(ViT)来优化全局特征的学习,使用多头交叉注意力模块(MHCA)实现编码器与解码器的多尺度信息融合。MAT-UNet通过大量的仿真数据训练获得最优模型参数,并在多样化复杂形状和肺部仿真模型进行了实验验证。定量评估指标表明,该方法在重建图像中的均方根误差(RMSE)结果为2.3156,结构相似性指数(SSIM)结果为0.9437,可视化结果与真实分布和边界具有很好的一致性。实验结果表明,本文提出的MAT-UNet模型展现出良好的鲁棒性和泛化能力,相较于传统的单一卷积结构,集成Transformer结构提供了更精准的EIT图像重建效果,在无损测量与检测应用中存在很大的潜力和价值。 展开更多
关键词 电阻抗层析成像 卷积注意力机制 SE-ViT连接 多头交叉注意力模块 U型卷积网络 无损测量
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部