期刊文献+
共找到2,500篇文章
< 1 2 125 >
每页显示 20 50 100
基于卷积长短时记忆深度神经网络的带内全双工非线性数字自干扰消除 被引量:5
1
作者 路雷 褚建军 +4 位作者 唐燕群 陶业荣 伍哲舜 郑承武 陈琦 《电子与信息学报》 EI CSCD 北大核心 2022年第11期3874-3881,共8页
带内全双工(IBFD)技术能够有效提高无线通信系统的频谱效率,近年来引起了广泛关注。然而,同时发送和接收引起的线性和非线性自干扰给IBFD带来了巨大挑战。传统的非线性自干扰消除主要是基于多项式模型和深度神经网络(DNN)来实现。多项... 带内全双工(IBFD)技术能够有效提高无线通信系统的频谱效率,近年来引起了广泛关注。然而,同时发送和接收引起的线性和非线性自干扰给IBFD带来了巨大挑战。传统的非线性自干扰消除主要是基于多项式模型和深度神经网络(DNN)来实现。多项式模型方法存在模型失配导致自干扰效果恶化的风险,而DNN方法无法针对高维数据特有的空频相关性、时间相关性等特点进行处理。该文基于卷积长短时记忆深度神经网络(CLDNN),通过在输入层中引入3维张量以及在卷积层设置复数卷积层结构,分别设计了两种重建自干扰信号的网络结构——2维CLDNN(2D-CLDNN)和复值CLDNN(CV-CLDNN),充分利用卷积神经网络局部感知和权值共享的优势,在高维特征中学习到更抽象的低维特征,从而提高自干扰消除的效果。实际场景中获得数据的评估结果显示,当功率放大器记忆长度M和自干扰信道多径长度L满足M+L=13时,通过总共60次训练轮数,该文提出的结构比传统DNN方法在非线性自干扰消除方面可以实现至少26%的改进,训练轮数也有明显减少。 展开更多
关键词 卷积长短时记忆深度神经网络 非线性自干扰消除 带内全双工 发送和接收 神经网络
下载PDF
基于多特征提取-卷积神经网络-长短期记忆网络的短期风电功率预测方法
2
作者 匡洪海 郭茜 《发电技术》 2025年第1期93-102,共10页
【目的】天气和随机因素会改变误差的统计特征,因此考虑对影响风电功率的多种气候因素进行特征提取,为优化功率时序特征提取,提出基于多特征提取(multimodal feature extraction,MFE)-卷积神经网络(convolutional neural network,CNN)-... 【目的】天气和随机因素会改变误差的统计特征,因此考虑对影响风电功率的多种气候因素进行特征提取,为优化功率时序特征提取,提出基于多特征提取(multimodal feature extraction,MFE)-卷积神经网络(convolutional neural network,CNN)-长短期记忆(long-short term memory,LSTM)网络的风电功率预测方法。【方法】首先,对数值天气预报(numerical weather prediction,NWP)数据提取11种统计性特征,通过提取基本特征和统计性特征对原始数据进行聚类,并根据类别分别建立预测模型,以提高预测模型的适应性;其次,在网络架构上对LSTM进行改进,通过CNN的特征提取能力和LSTM的非线性序列预测能力,实现对风电功率历史信息和NWP数据的充分挖掘。最后,利用我国新疆某风电场数据,通过MFE消融实验、CNN消融实验,验证了所提短期风电功率预测方法的有效性和优越性。【结果】相比于自回归移动平均(autoregressive integrated moving average,ARIMA)、全连接循环神经网络(fully recurrent neural network,FRNN)模型和MFE-LSTM、CNN-LSTM模型,MFE-CNN-LSTM预测方法的均方根误差与平均绝对误差均有所下降。【结论】MFE-CNN-LSTM预测方法可有效提取特征,并且MFE与CNN有效提升了预测准确性。 展开更多
关键词 多特征提取 卷积神经网络 长短记忆网络 K-均值聚类算法 风电功率预测 短期预测 消融实验
下载PDF
基于长短期记忆网络-卷积神经网络的电力设备缺陷文本归口研究
3
作者 王璇 曹靖 韩培洁 《山西电力》 2025年第1期10-14,共5页
随着电网企业发展,电网生产运营中会产生大量电力设备缺陷文本,其中蕴含着电力设备维护与检修的重要信息。由于缺陷文本是非结构化数据,其价值的挖掘依赖于归口,为提升文本利用效率,提出了一种基于长短期记忆网络-卷积神经网络的电力设... 随着电网企业发展,电网生产运营中会产生大量电力设备缺陷文本,其中蕴含着电力设备维护与检修的重要信息。由于缺陷文本是非结构化数据,其价值的挖掘依赖于归口,为提升文本利用效率,提出了一种基于长短期记忆网络-卷积神经网络的电力设备缺陷文本自动归口模型。以变压器缺陷文本为例开展研究,模型采用长短期记忆网络对词的权重进行学习,卷积神经网络对带权重的词进行特征提取,用softmax进行分类,最终得到文本归口。通过算例分析,证明该模型在准确度、召回率等方面均优于卷积神经网络等常规方法。 展开更多
关键词 电力设备缺陷文本 文本分类 长短记忆网络 卷积神经网络
下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
4
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短记忆网络 序模式注意力机制 集群辨识 卷积神经网络
原文传递
基于麻雀搜索算法和长短期记忆神经网络的轨道交通站点客流预测
5
作者 张开雯 何勇 +1 位作者 余家香 陈林 《四川师范大学学报(自然科学版)》 CAS 2025年第1期105-113,共9页
准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度... 准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度慢,容易陷入局部最优解的问题,引入黄金莱维飞行策略,通过动态调整探索者移动步长的方法,使得它在未知范围内搜索时,能够覆盖更大的范围,提高SSA算法全局搜索的能力.通过使用ISSA算法对LSTM模型的隐含层、学习率和迭代次数的神经元个数进行优化,构建ISSA-LSTM组合预测模型,用于城市轨道交通短时客流的预测.将该模型与BP、LSTM和SSA-LSTM等3种短时客流预测模型进行对比,结果表明:在针对工作日和非工作日客流的预测中,ISSA-LSTM模型预测误差最小,具有较好的预测效果. 展开更多
关键词 客流预测 改进麻雀搜索算法 长短记忆神经网络 组合模型
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测 被引量:1
6
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短记忆网络
原文传递
基于足底压力和卷积长短期记忆神经网络的前交叉韧带断裂智能辅助诊断
7
作者 李玳 王天牧 +5 位作者 张思 秦跃 谢福贵 刘辛军 聂振国 黄红拾 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期109-117,共9页
提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,P... 提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,PressureConvLSTM模型对前交叉韧带断裂的辅助诊断,能够达到95%的预测准确度;与卷积神经网络等其他模型相比,准确度得到大幅度提升。 展开更多
关键词 智能诊断 前交叉韧带断裂 足底压力 深度学习 卷积长短记忆神经网络
下载PDF
卷积循环神经网络的高光谱图像解混方法
8
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短记忆网络 深度光谱分区
下载PDF
基于多源数据融合与卷积长短期记忆神经网络的聚合物挤出过程熔体密度监测方法 被引量:1
9
作者 张彬彬 陈祝云 +1 位作者 张飞 晋刚 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期54-62,共9页
聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚... 聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚合物挤出加工过程中,由于数据类型、工艺参数、操作环境等多变性因素的影响,传统的机器学习方法可能难以捕捉聚合物加工中不同输入参数和输出质量参数之间的复杂关系,使得监测任务难以获得理想的准确性。本文提出了一种基于多源数据融合与卷积长短期记忆神经网络(CNN–LSTM)的熔体密度监测方法,用于在线监测聚碳酸酯–丙烯腈–丁二烯–苯乙烯共聚物(PC/ABS)共混体系的熔体密度。首先,通过实时采集安装在挤出机模头处的近红外、拉曼及超声3种传感器数据,对3种传感数据进行预处理并融合后作为输入;然后,通过合理设计的网络结构,构建CNN–LSTM监测模型,利用CNN的特征提取能力与LSTM的预测能力,最终实现对聚合物共混过程中的熔体密度的实时监测。基于独立开发的多源传感数据实时采集装置获取的数据,利用所提方法对PC/ABS共混挤出过程的熔体密度进行实时监测,结果表明:本文方法能够准确监测聚合物熔体密度,其在测试集上的均方根误差和决定系数分别为0.975 5、0.006 3 g/cm3,比传统的卷积神经网络方法、长短期记忆网络方法、岭回归方法、偏最小二乘回归方法、多层感知机方法和支持向量机回归方法具有更高的预测精度;本文方法的10次输入平均预测时间为1.523 5 s,能够满足实际生产过程的实时监测。综上所述,所提出的基于多源数据融合与CNN–LSTM的熔体密度监测方法显著提高了聚合物挤出过程中熔体密度的实时监测精度,为挤出过程中聚合物的质量提供了可靠的技术支持。 展开更多
关键词 聚合物挤出加工 熔体密度 多传感器数据融合 卷积长短记忆神经网络 在线监测
下载PDF
使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络预测盾构隧道施工引起的地面沉降 被引量:4
10
作者 黄茂庭 徐金明 《城市轨道交通研究》 北大核心 2024年第6期166-171,共6页
[目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测... [目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测。[方法]以某地铁施工区间地面沉降监测数据为研究对象,使用CNN对影响参数(压缩模量、黏聚力、内摩擦角、泊松比、土层厚度、隧道埋深和施工参数)与地面沉降监测值进行连接,使用LSTM神经网络对地面沉降进行分析,建立了基于CNN-LSTM联合神经网络的地面沉降预测模型,探讨了同时考虑多个因素对地面沉降预测值的影响。[结果及结论]使用CNN对地面沉降相关的影响参数特征提取效果较好;所建CNN-LSTM模型的准确率比单独使用LSTM模型的准确率提高了3%、比传统BP(反向传播)神经网络模型准确率提高了9%;所建CNN-LSTM模型,对单测点短时间地面沉降预测准确率达到93%,预测值与监测值吻合较好。 展开更多
关键词 盾构隧道施工 地面沉降 预测 卷积神经网络 长短记忆神经网络
下载PDF
基于长短时记忆神经网络的励磁涌流与故障电流识别方法 被引量:1
11
作者 张国栋 刘凯 +2 位作者 蒲海涛 姚福强 张帅帅 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期730-738,共9页
变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真... 变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真产生大量三相电流瞬时采样数据作为训练神经网络的样本集;然后,利用Keras平台搭建LSTM神经网络模型并完成训练;最后,利用新的仿真数据和现场故障录波数据对训练好的LSTM神经网络进行测试.结果表明LSTM神经网络可以快速准确地区分各种情况下的励磁涌流和故障电流,从而证实该方法的有效性. 展开更多
关键词 变压器差动保护 长短记忆神经网络 励磁涌流识别 故障电流识别
下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号 被引量:1
12
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短记忆神经网络 混合神经网络
原文传递
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测 被引量:1
13
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短记忆神经网络 改进灰狼算法 自适应位置更新
下载PDF
基于时空长短时记忆神经网络的地基云图预测算法
14
作者 吴现 吐松江·卡日 +3 位作者 王海龙 马小晶 李振恩 邵罗 《计算机工程》 CAS CSCD 北大核心 2024年第3期298-305,共8页
针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信... 针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信息进行多分支获取,一部分使用ST-LSTM神经网络提取不同帧之间的时空特征,另一部分将图像序列进行分解,并通过基于门控机制的记忆融合网络来获取分解后图像中的结构细节信息;最后将得到的分支特征进行组合后经过解码网络输出最终的预测视频流。在地基云图、Moving MNIST和Human 3.6M数据集上的实验结果表明,在图像预测准确率、结构细节信息保留效果以及人眼主观感受上,该预测模型均优于对比模型。与基准模型TaylorNet相比,所提模型在Moving MNIST数据集上均方误差指标和平均绝对误差指标分别降低15.7%和11.8%,在地基云图数据集上,其结构相似性指标与峰值信噪比指标分别提升1%和3.2%,且生成的视频流数据更为清晰,能够更准确地描述云层未来的运动状况,从而更可靠地预测光伏电站未来的输出功率。 展开更多
关键词 深度学习 视频预测 地基云图 麦克劳林展开 长短记忆神经网络
下载PDF
基于LSTM-DNN(长短期记忆-深度神经网络)融合模型的土压平衡盾构土仓压力预测方法
15
作者 王伯芝 黄永亮 +6 位作者 陈文明 丁爽 刘浩 刘学增 彭子晖 吴炜枫 王嘉烨 《城市轨道交通研究》 北大核心 2024年第12期39-45,共7页
[目的]土仓压力是土压平衡盾构施工安全评估的关键参数,准确预测土仓压力有助于施工技术人员及时采取管控措施,进而保障地铁隧道的建设安全性。因此,有必要对土压平衡盾构土仓压力预测方法进行研究。[方法]提出一种多分支的LSTM(长短期... [目的]土仓压力是土压平衡盾构施工安全评估的关键参数,准确预测土仓压力有助于施工技术人员及时采取管控措施,进而保障地铁隧道的建设安全性。因此,有必要对土压平衡盾构土仓压力预测方法进行研究。[方法]提出一种多分支的LSTM(长短期记忆)-DNN(深度神经网络)融合模型。LSTM分支通过回溯历史数据提取其时序演变特征,DNN分支提取掘进状态特征,将两者组合后通过全连接层进行融合,实现对土仓压力的预测。依托济南轨道交通1号线实际盾构隧道数据对模型进行验证,并与LSTM模型、DNN模型进行了对比分析。[结果及结论]基于LSTM-DNN融合算法建立的土仓压力预测模型可以高效收敛,且所提模型在训练集和验证集上的预测效果良好。在后续的100步测试中,由LSTM-DNN融合模型得出的土仓压力预测值较好地反映了真实值的变化趋势,其平均偏差为7.65 kPa,相对误差为6.09%,预测精度较高。 展开更多
关键词 城市轨道交通 土仓压力预测 长短记忆 深度神经网络
下载PDF
卷积-长短期记忆神经网络超宽带定位方法 被引量:5
16
作者 李大占 宁一鹏 +2 位作者 赵文硕 孙英君 王川阳 《导航定位学报》 CSCD 北大核心 2024年第1期97-105,共9页
针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN... 针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN)的输入,借助CNN良好的数据特征提取能力,充分挖掘UWB测距值的特征;然后利用长短期记忆网络(LSTM)进行进一步的特征学习,并进行训练和预测UWB测距值,以减少测距误差对UWB测距值精度的影响;最后,利用高斯-牛顿迭代算法求解出最终的UWB定位结果,同时,建立多项式和指数函数UWB测距误差改正模型,并与本文方法进行对比分析。实验结果表明,在静态和动态实验下,基于CNN-LSTM网络模型结果的精度均优于其他2种模型,证明该算法可有效降低测距误差,提高UWB的定位精度。 展开更多
关键词 超宽带(UWB) 定位 卷积神经网络长短记忆网络(CNN-LSTM) 多项式函数 指数函数
下载PDF
基于卷积神经网络和长短期记忆网络的坝上水位精细化建模方法
17
作者 席荣光 申建建 +1 位作者 王祥 郭乐 《水资源研究》 2024年第2期127-134,共8页
坝上水位是水电站调度运行的重要依据,然而受调峰非恒定流的影响,传统插值计算的水电站坝上水位与实际值存在较大的误差,不利于水库水位的精细控制和实际调度。本研究采用最大互信息系数探索水电站坝上水位变化的关联因素,并提出一种基... 坝上水位是水电站调度运行的重要依据,然而受调峰非恒定流的影响,传统插值计算的水电站坝上水位与实际值存在较大的误差,不利于水库水位的精细控制和实际调度。本研究采用最大互信息系数探索水电站坝上水位变化的关联因素,并提出一种基于深度学习的CNN-LSTM模型计算方法,实现了准确计算受调峰非恒定流影响的水电站坝上水位。为验证本文所提模型的有效性,将其与传统法在三种评价准则进行对比,结果表明,所提的CNN-LSTM模型在汛期和枯水期的各种评价准则下均优于传统法,模型计算结果更接近实际坝上水位。本文所提模型在水电运行时可有效避免计算水位不准确带来的控制风险,降低水电站运行风险。 展开更多
关键词 坝上水位 非恒定流 卷积神经网络 长短记忆网络
下载PDF
基于长短时记忆神经网络易损性分析的适用性研究 被引量:1
18
作者 王睿 杨建荣 《四川建筑科学研究》 2024年第2期9-15,共7页
桥梁的损坏或失效可能导致严重的人员伤亡和巨大的经济损失。因此,对桥梁的破坏损失和地震性能进行准确的定量评估至关重要。为了实现这一目标,通常会采用构建易损性曲线的方法。易损性曲线表征在给定地震动强度下,桥梁部件或结构达到... 桥梁的损坏或失效可能导致严重的人员伤亡和巨大的经济损失。因此,对桥梁的破坏损失和地震性能进行准确的定量评估至关重要。为了实现这一目标,通常会采用构建易损性曲线的方法。易损性曲线表征在给定地震动强度下,桥梁部件或结构达到或超过某一破坏程度的条件概率。采用桥墩位移延性比作为损伤指标,利用长短时记忆(long short-term memory,简称LSTM)神经网络成功地建立了桥梁地震易损性曲线。研究结果表明,该模型展现了高计算效率和精度,可快速而准确地预测地震作用下桥梁结构构件的损伤指标。 展开更多
关键词 桥梁抗震 地震易损性 长短记忆神经网络 有限元分析
下载PDF
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:1
19
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短记忆神经网络(LSTM) 二次多项式模型 QP-LSTM模型 multi-GNSS卫星钟差预报
下载PDF
阀控液压马达位置伺服系统长短时记忆神经网络预测抗扰反步控制 被引量:1
20
作者 柴凌云 栾海英 +2 位作者 刘增元 沈洲 任翔 《液压与气动》 北大核心 2024年第8期128-136,共9页
针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系... 针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系统中难以建模的摩擦非线性,将其视为扰动,通过设计扩张状态观测器进行估测,并使用反步法对估测得到的总扰动进行补偿。最后,在Simulink中搭建长短时记忆神经网络预测抗扰反步控制算法进行仿真验证,并与径向基函数滑模控制算法、反步控制算法和自抗扰控制算法进行对比,证明其在对含有时滞及摩擦非线性的阀控液压马达位置伺服系统进行控制时,具有较快的响应速度及较好的跟踪性能。 展开更多
关键词 阀控液压马达位置系统 长短记忆神经网络 反步控制 扩张状态观测器
下载PDF
上一页 1 2 125 下一页 到第
使用帮助 返回顶部