由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of elec...由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of electron,Ne)的预测工作对短波通信设备三维射线实时追踪定位提供必要条件。本文采用国际电离层参考模型提供的2016年电离层Ne数据,根据数据的三维空间时间序列特征,搭建了自编码器和卷积长短期记忆(Convolutional Long Short-Term Memory Network,Conv LSTM)网络组成的网络结构,在不引入地球自转周期之外任何先验知识的条件下,对Ne数据进行深度学习并实现预测,首先通过实验对比了SGD、Adagrad、Adadelta、Adam、Adamax和Nadam六种优化算法的性能,又对比了三种预测策略的均方根误差(Root Mean Square Error, RMSE),1h-to-1h预测策略的全球平均RMSE为1.0 NEU(最大值的0.4%),1h-to-24h和24h-to-24h预测策略的全球平均RMSE为6.3 NEU(2.6%)。由实验结果得出以下结论,一是Nadam优化算法更适合电离层Ne的深度学习,二是1h预测策略的性能与之前类似的电离层TEC预测工作(RMSE高于1.5 TECU,最大值的1%)相比有竞争力,但预测时间太短且对数据的实时性要求较高,三是两种24h预测策略虽能实现长期预测但性能不理想,要实现三维空间时间序列的长期高精度预测需要进一步改善神经网络、模型结构和预测策略。展开更多
目的雷达回波外推是进行短临降水预测的一种重要方法,相较于传统的数值天气预报方法能够实现更快、更准确的预测。基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)的回波外推算法的效果优于其他的深度...目的雷达回波外推是进行短临降水预测的一种重要方法,相较于传统的数值天气预报方法能够实现更快、更准确的预测。基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)的回波外推算法的效果优于其他的深度学习外推算法,但是忽略了普通卷积运算在面对局部变化特征时的局限性,并且在外推过程中将损失函数简单定义为均方误差(mean squared error,MSE),忽略了外推图像与原始图像的分布相似性,容易导致信息丢失。为解决以上不足,提出了一种基于对抗型光流长短期记忆网络(deep convolutional generative adversarial flow based long short-term memory network,DCF-LSTM)的回波外推算法。方法首先,采用光流追踪局部特征的方式改进Conv LSTM,突破了一般卷积核面对局部变化特征的限制。然后,以光流长短期记忆网络(flow based long short-term memory network,FLSTM)作为基本模块构建外推模型。最后,引入对抗网络,与外推模型组成端到端的博弈系统DCF-LSTM,两者交替训练实现外推图像分布向原图像分布的拟合。结果在4种不同的反射率强度下进行了消融研究,并与3种主流的气象业务算法进行了对比。实验结果表明,DCF-LSTM在所有评价指标中表现最优,尤其在反射率为35 d BZ的条件下。结论由实验结果可知,引入光流法能够使模型具有更好的抗畸变性,引入深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)判别模块能进一步增加结果的准确性。本文提出的DCF-LSTM回波外推算法相比于其他算法,雷达外推准确率获得了进一步提升。展开更多
文摘由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of electron,Ne)的预测工作对短波通信设备三维射线实时追踪定位提供必要条件。本文采用国际电离层参考模型提供的2016年电离层Ne数据,根据数据的三维空间时间序列特征,搭建了自编码器和卷积长短期记忆(Convolutional Long Short-Term Memory Network,Conv LSTM)网络组成的网络结构,在不引入地球自转周期之外任何先验知识的条件下,对Ne数据进行深度学习并实现预测,首先通过实验对比了SGD、Adagrad、Adadelta、Adam、Adamax和Nadam六种优化算法的性能,又对比了三种预测策略的均方根误差(Root Mean Square Error, RMSE),1h-to-1h预测策略的全球平均RMSE为1.0 NEU(最大值的0.4%),1h-to-24h和24h-to-24h预测策略的全球平均RMSE为6.3 NEU(2.6%)。由实验结果得出以下结论,一是Nadam优化算法更适合电离层Ne的深度学习,二是1h预测策略的性能与之前类似的电离层TEC预测工作(RMSE高于1.5 TECU,最大值的1%)相比有竞争力,但预测时间太短且对数据的实时性要求较高,三是两种24h预测策略虽能实现长期预测但性能不理想,要实现三维空间时间序列的长期高精度预测需要进一步改善神经网络、模型结构和预测策略。
文摘目的雷达回波外推是进行短临降水预测的一种重要方法,相较于传统的数值天气预报方法能够实现更快、更准确的预测。基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)的回波外推算法的效果优于其他的深度学习外推算法,但是忽略了普通卷积运算在面对局部变化特征时的局限性,并且在外推过程中将损失函数简单定义为均方误差(mean squared error,MSE),忽略了外推图像与原始图像的分布相似性,容易导致信息丢失。为解决以上不足,提出了一种基于对抗型光流长短期记忆网络(deep convolutional generative adversarial flow based long short-term memory network,DCF-LSTM)的回波外推算法。方法首先,采用光流追踪局部特征的方式改进Conv LSTM,突破了一般卷积核面对局部变化特征的限制。然后,以光流长短期记忆网络(flow based long short-term memory network,FLSTM)作为基本模块构建外推模型。最后,引入对抗网络,与外推模型组成端到端的博弈系统DCF-LSTM,两者交替训练实现外推图像分布向原图像分布的拟合。结果在4种不同的反射率强度下进行了消融研究,并与3种主流的气象业务算法进行了对比。实验结果表明,DCF-LSTM在所有评价指标中表现最优,尤其在反射率为35 d BZ的条件下。结论由实验结果可知,引入光流法能够使模型具有更好的抗畸变性,引入深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)判别模块能进一步增加结果的准确性。本文提出的DCF-LSTM回波外推算法相比于其他算法,雷达外推准确率获得了进一步提升。