We take the two dimensional vorticity equations as models to describe spectral methods and their combinations with finite difference methods or finite element methods, which are applicable to other similar nonlinear ...We take the two dimensional vorticity equations as models to describe spectral methods and their combinations with finite difference methods or finite element methods, which are applicable to other similar nonlinear problems. Some numerical results and error estimates of these methods are given.展开更多
Oscillating water column (OWC) based wave energy plants have been designed with several types of bidirectional turbines for converting pneumatic power to shaft power. Impulse turbines with linked guide vanes and fix...Oscillating water column (OWC) based wave energy plants have been designed with several types of bidirectional turbines for converting pneumatic power to shaft power. Impulse turbines with linked guide vanes and fixed guide vanes have been tested at the Indian Wave Energy plant. This was after initial experimentation with Well's turbines. In contrast to the Well's turbine which has a linear damping characteristic, impulse turbines have non-linear damping. This has an important effect in the overall energy conversion from wave to wire. Optimizing the wave energy plant requires a turbine with linear damping and good efficiency over a broad range of flow coefficient. This work describes how such a design can be made using fixed guide vane impulse turbines. The Indian Wave Energy plant is used as a case study.展开更多
文摘We take the two dimensional vorticity equations as models to describe spectral methods and their combinations with finite difference methods or finite element methods, which are applicable to other similar nonlinear problems. Some numerical results and error estimates of these methods are given.
文摘Oscillating water column (OWC) based wave energy plants have been designed with several types of bidirectional turbines for converting pneumatic power to shaft power. Impulse turbines with linked guide vanes and fixed guide vanes have been tested at the Indian Wave Energy plant. This was after initial experimentation with Well's turbines. In contrast to the Well's turbine which has a linear damping characteristic, impulse turbines have non-linear damping. This has an important effect in the overall energy conversion from wave to wire. Optimizing the wave energy plant requires a turbine with linear damping and good efficiency over a broad range of flow coefficient. This work describes how such a design can be made using fixed guide vane impulse turbines. The Indian Wave Energy plant is used as a case study.