期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
高矮塔斜拉桥横向减震体系关键参数联合优化 被引量:1
1
作者 赵国辉 潘佑东 《中国安全科学学报》 CAS CSCD 北大核心 2021年第4期72-80,共9页
为探究由钢阻尼器与抗风支座组成的横向减震体系关键参数对斜拉桥横向地震响应的影响,以某高矮塔斜拉桥为例,基于结构内力与位移响应相平衡的原则,运用正交试验设计法设定参数联合优化的分析工况,分别以结构内力与位移响应、钢阻尼器耗... 为探究由钢阻尼器与抗风支座组成的横向减震体系关键参数对斜拉桥横向地震响应的影响,以某高矮塔斜拉桥为例,基于结构内力与位移响应相平衡的原则,运用正交试验设计法设定参数联合优化的分析工况,分别以结构内力与位移响应、钢阻尼器耗能为优化指标,探究算例中减震体系关键参数钢阻尼器屈服力及抗风支座初始间隙对优化指标的影响。结果表明:辅助墩内力及高塔侧边跨主梁梁端位移响应的控制因子具有显著的参数耦合效应,参数优化时需联合考虑;在墩台设置钢阻尼器可显著降低辅助墩内力及梁端位移响应,但不能有效降低桥塔内力响应。 展开更多
关键词 高矮塔斜拉桥 横向减震体系 参数联合优化 正交试验设计 耦合效应
原文传递
LiDAR点云压缩下采样与量化参数联合优化建模
2
作者 杨先凤 廖陈 +3 位作者 段昶 舒惠 来梦军 章超 《激光与光电子学进展》 CSCD 北大核心 2024年第14期191-198,共8页
传统的LiDAR点云数据有损压缩方法通常会导致点云点的数量减少和剩余点的坐标精度降低。针对现有点云压缩参数优化方法忽略了点数减少带来的质量损失导致优化效果不高的问题,提出一种LiDAR点云压缩中下采样与量化参数的联合优化建模方法... 传统的LiDAR点云数据有损压缩方法通常会导致点云点的数量减少和剩余点的坐标精度降低。针对现有点云压缩参数优化方法忽略了点数减少带来的质量损失导致优化效果不高的问题,提出一种LiDAR点云压缩中下采样与量化参数的联合优化建模方法,该方法能同时对两种损失进行优化,提高点云的压缩效率。首先,统计采用不同参数组合压缩点云后的比特流大小;然后,找到码率大小与下采样和量化参数组合之间关系的分析模型,并用模型估计出码率的最小失真和对应的参数组合;最后,根据码率与最小失真对应的参数组合之间的关系建立下采样与量化参数联合优化模型。实验结果表明,所提方法有效提升了点云数据的压缩效率,相比基准编码器,在拟合数据集和测试数据集上分别获得了10.43%和16.39%的BD-rate提升。 展开更多
关键词 LIDAR点云 点云压缩 点云下采样 率失真优化 参数联合优化
原文传递
有轨电车动力系统设计及参数优化 被引量:1
3
作者 栗伟周 葛新锋 李建秋 《机械设计与制造》 北大核心 2019年第10期140-143,149,共5页
基于燃料电池有轨电车的整车工况,设计了“燃料电池+动力电池”的动力系统结构。以燃料电池功率和动力电池单体并联数量作为优化参数,设计了联合优化算法结构。采用庞特里亚金极小值原理分配燃料电池和动力电池功率,确定燃料电池功率和... 基于燃料电池有轨电车的整车工况,设计了“燃料电池+动力电池”的动力系统结构。以燃料电池功率和动力电池单体并联数量作为优化参数,设计了联合优化算法结构。采用庞特里亚金极小值原理分配燃料电池和动力电池功率,确定燃料电池功率和动力电池容量参数组合可行区域,并解决在不同参数组合条件下最优状态初值的选取问题,得到了成本最小的最佳参数组合并作为参数优化结果。研究结果表明:随着燃料电池功率逐渐增加,燃料电池工作点移动到高效率区域,同时燃料电池最大效率点在约为占总功率的18%上,参数优化结果为今后的工程化设计提供技术支撑。 展开更多
关键词 燃料电池有轨电车 动力系统 联合参数优化 功率分配
下载PDF
居民消费价格指数建模与预测
4
作者 王晓惠 傅廷才 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第6期769-772,共4页
为了提高居民消费价格指数预测的准确性,根据模型参数之间的内在联系,建立了一种参数联合求解的居民消费价格指数预测模型.收集消费价格指数的历史数据,将相关参数编码成为一个基因.通过遗传算法模拟生物进化机制搜索最优参数,利用最优... 为了提高居民消费价格指数预测的准确性,根据模型参数之间的内在联系,建立了一种参数联合求解的居民消费价格指数预测模型.收集消费价格指数的历史数据,将相关参数编码成为一个基因.通过遗传算法模拟生物进化机制搜索最优参数,利用最优参数建立居民消费价格指数预测模型.应用实例的结果表明,该模型可以获得理想的居民消费价格指数预测结果,为非线性预测问题的建模与预测提供了一种思路. 展开更多
关键词 消费水平 价格指数 参数联合优化 预测模型
下载PDF
An adaptive waveform-detection threshold joint optimization method for target tracking 被引量:5
5
作者 王宏强 夏洪恩 +1 位作者 程永强 王璐璐 《Journal of Central South University》 SCIE EI CAS 2013年第11期3057-3064,共8页
The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The tr... The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error. 展开更多
关键词 cognitive radar adaptive waveform selection target tracking joint optimization detection-tracking system
下载PDF
Multi-objective parameter optimization for a single-shaft series-parallel plug-in hybrid electric bus using genetic algorithm 被引量:4
6
作者 CHEN Zheng ZHOU LiYan +2 位作者 SUN Yong MA ZiLin HAN ZongQi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第8期1176-1185,共10页
Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong ad... Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never- theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op- timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per- formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com- ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy, meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat- egy would provide a theoretical guidance on parameter selection for PHEB manufacturers. 展开更多
关键词 multi-objective parameter optimization single-shaft series-parallel powertrain plug-in hybrid electric bus (PHEB) genetic algorithm (GA) driving cycle city bus route
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部