[Objective] The aim was to explore key technology to cultivate Holotdchia diomphalia larvae with Agaricus bisporus residues and to provide, technologicar sup- ports for processing of Agaricus bisporus residues. [Metho...[Objective] The aim was to explore key technology to cultivate Holotdchia diomphalia larvae with Agaricus bisporus residues and to provide, technologicar sup- ports for processing of Agaricus bisporus residues. [Method] In the research, fodder thickness, population density and residues under different treatments were set to re- search effects on Holotrichia diomphalia larvae. [Result] The optimal thickness of fodder was 25 cm and the optimal feeding density was 44-56 larvae per hectare. The dry residues were more suitable, compared with decomposed residues and corn bran powders, for cultivation of Holotrichia diomphalia larvae. [Conclusion] Cultivation of Holotrichia diomphalia larvae with Agaricus bisporus residues is a new method to make use of Agaricus bisporus residues and of significance for extension of agricul- tural circulation chain, increase of economic benefits and ecological benefits.展开更多
This study aimed to investigate the bacterial communities in mushroom compost piles composed of rice straw, corn stover, and cow dung. Bacterial com- munities of samples at the beginning of composting, at the end of f...This study aimed to investigate the bacterial communities in mushroom compost piles composed of rice straw, corn stover, and cow dung. Bacterial com- munities of samples at the beginning of composting, at the end of fermentation phase I and II were collected and analyzed using Polymerase Chain Reaction-De- naturing Gradient Gel Electrophoresis (PCR-DGGE) based on 16S rDNA universal primers from Escherichia coli. A total of 56 different clone sequences were obtained (GenBank accession number: KF630598-KF630653). They were classified into seven phyla and 42 genera. Dominant microflora during composting belonged to phylum Proteobacteria, Firmicutes, and Actinobacteria, with the dominant genera of Bacillus, Paenibacillus, Thermomonospora, Thermasporomyces, Pseudomonas, and Cellvibrio. Bacterial diversity (Shannon index) analysis showed that bacterial species in com- post pile composed mainly of rice straw continuously increased during composting, while those in compost pile composed mainly of corn stover firstly increased and then reduced. Principal component analysis showed that corn stover compost sam- ples at the end of fermentation phase I and phase II were clustered into one group, suggesting that corn stover composted faster than anticipated. In general, rice straw compost has higher bacterial diversity but longer composting time period, while corn stover compost has lower bacterial diversity but shorter composting time period.展开更多
Anthropogenic and geogenic activities release potentially toxic trace elements (PTEs) that impact human health and the envi- ronment. Increasing environmental pollution stresses the need for environmentally friendly...Anthropogenic and geogenic activities release potentially toxic trace elements (PTEs) that impact human health and the envi- ronment. Increasing environmental pollution stresses the need for environmentally friendly remediation technologies. Physico-chemical treatments are effective, but are costly and generate secondary pollution on- or off-site. Phytoremediation is a biological treatment that provides positive results for PTE eradication with few limitations. Mycoremediation, a type of bioremediation to use macrofungi (mushrooms) for PTE extraction from polluted sites, is the best option for soil cleanup. This review highlights the scope, mechanisms, and potentials of mycoremediation. Mushrooms produce a variety of extracellular enzymes that degrade polycyclic aromatic hydro- carbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, dyes, and petroleum hydrocarbons into simpler compounds. Cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr), copper (Cu), zinc (Zn), and iron (Fe) have been effectively extracted by Phellinus badius, Amanita spissa, Lactarius piperatus, Suillus grevillei, Agaricus bisporous, Trieholoma terreum, and Fomes fomentarius, re- spectively. Mycoremediation is affected by environmental and genetic factors, such as pH, substrate, mycelium age, enzyme type, and ecology. The bioaccumulation factor (BAF) can make clear the effectiveness of a mushroom for the extraction of PTEs from the substrate. Higher BAF values of Cd (4.34), Pb (2.75), Cu (9), and Hg (95) have been reported for Amanita muscaria, Hypholoma fasciculare, Russula foetens, and Boletus pinophilus, respectively, demonstrating their effectiveness and suitability for mycoremediation of PTEs.展开更多
基金Supported by the National Key Technology R&D Program (2007BAD89B09-10)National Public Service Project (200803033-A0903)~~
文摘[Objective] The aim was to explore key technology to cultivate Holotdchia diomphalia larvae with Agaricus bisporus residues and to provide, technologicar sup- ports for processing of Agaricus bisporus residues. [Method] In the research, fodder thickness, population density and residues under different treatments were set to re- search effects on Holotrichia diomphalia larvae. [Result] The optimal thickness of fodder was 25 cm and the optimal feeding density was 44-56 larvae per hectare. The dry residues were more suitable, compared with decomposed residues and corn bran powders, for cultivation of Holotrichia diomphalia larvae. [Conclusion] Cultivation of Holotrichia diomphalia larvae with Agaricus bisporus residues is a new method to make use of Agaricus bisporus residues and of significance for extension of agricul- tural circulation chain, increase of economic benefits and ecological benefits.
基金Supported by the National Key Technology Research and Development Program during the 12th Five-Year Plan Period of China(2012BAD14B09)Earmarked Fund for China Agriculture Research System(PXM2013-014207-000096)Beijing Higher Education Young Elite Teacher Project(YETP1714)~~
文摘This study aimed to investigate the bacterial communities in mushroom compost piles composed of rice straw, corn stover, and cow dung. Bacterial com- munities of samples at the beginning of composting, at the end of fermentation phase I and II were collected and analyzed using Polymerase Chain Reaction-De- naturing Gradient Gel Electrophoresis (PCR-DGGE) based on 16S rDNA universal primers from Escherichia coli. A total of 56 different clone sequences were obtained (GenBank accession number: KF630598-KF630653). They were classified into seven phyla and 42 genera. Dominant microflora during composting belonged to phylum Proteobacteria, Firmicutes, and Actinobacteria, with the dominant genera of Bacillus, Paenibacillus, Thermomonospora, Thermasporomyces, Pseudomonas, and Cellvibrio. Bacterial diversity (Shannon index) analysis showed that bacterial species in com- post pile composed mainly of rice straw continuously increased during composting, while those in compost pile composed mainly of corn stover firstly increased and then reduced. Principal component analysis showed that corn stover compost sam- ples at the end of fermentation phase I and phase II were clustered into one group, suggesting that corn stover composted faster than anticipated. In general, rice straw compost has higher bacterial diversity but longer composting time period, while corn stover compost has lower bacterial diversity but shorter composting time period.
文摘Anthropogenic and geogenic activities release potentially toxic trace elements (PTEs) that impact human health and the envi- ronment. Increasing environmental pollution stresses the need for environmentally friendly remediation technologies. Physico-chemical treatments are effective, but are costly and generate secondary pollution on- or off-site. Phytoremediation is a biological treatment that provides positive results for PTE eradication with few limitations. Mycoremediation, a type of bioremediation to use macrofungi (mushrooms) for PTE extraction from polluted sites, is the best option for soil cleanup. This review highlights the scope, mechanisms, and potentials of mycoremediation. Mushrooms produce a variety of extracellular enzymes that degrade polycyclic aromatic hydro- carbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, dyes, and petroleum hydrocarbons into simpler compounds. Cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr), copper (Cu), zinc (Zn), and iron (Fe) have been effectively extracted by Phellinus badius, Amanita spissa, Lactarius piperatus, Suillus grevillei, Agaricus bisporous, Trieholoma terreum, and Fomes fomentarius, re- spectively. Mycoremediation is affected by environmental and genetic factors, such as pH, substrate, mycelium age, enzyme type, and ecology. The bioaccumulation factor (BAF) can make clear the effectiveness of a mushroom for the extraction of PTEs from the substrate. Higher BAF values of Cd (4.34), Pb (2.75), Cu (9), and Hg (95) have been reported for Amanita muscaria, Hypholoma fasciculare, Russula foetens, and Boletus pinophilus, respectively, demonstrating their effectiveness and suitability for mycoremediation of PTEs.