期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
双注意力随机选择全局上下文细粒度识别网络
1
作者 徐胜军 荆扬 +3 位作者 段中兴 李明海 李海涛 刘福友 《液晶与显示》 CAS CSCD 北大核心 2024年第4期506-521,共16页
针对细粒度图像识别任务中易忽视微小潜在性特征且外观差异细微等问题,提出一种基于双注意力随机选择全局上下文细粒度识别网络。首先,使用ConvNeXt作为主干网络,提出双注意力随机选择模块,对不同阶段提取到的特征进行通道随机选择和空... 针对细粒度图像识别任务中易忽视微小潜在性特征且外观差异细微等问题,提出一种基于双注意力随机选择全局上下文细粒度识别网络。首先,使用ConvNeXt作为主干网络,提出双注意力随机选择模块,对不同阶段提取到的特征进行通道随机选择和空间随机选择,使网络能够关注到其他潜在微小判别性特征;其次,利用全局上下文注意力模块将深层特征的语义信息融合到中间层,增强中间层定位微小特征的能力;最后,提出一种多分支损失,对中间层、深层和拼接层特征引入分类损失,结合不同分支提取到的特征,诱导网络获得多样性的判别特征。所提网络在Stanford-cars、CUB-200-2011、FGVC-Aircraft 3个公开细粒度数据集和真实场景下车型数据集VMRURS上分别达到了95.2%、92.1%、94.0%和97.0%的识别准确率,其性能相比其他对比方法有较大幅度提升。 展开更多
关键词 细粒度识别 ConvNeXt 双注意力随机选择 全局上下文注意力 多分支损失
下载PDF
基于双注意力机制的MSCN-BiGRU的滚动轴承故障诊断方法 被引量:1
2
作者 王敏 邓艾东 +2 位作者 马天霆 张宇剑 薛原 《振动与冲击》 EI CSCD 北大核心 2024年第6期84-92,103,共10页
针对滚动轴承故障诊断模型在变工况和环境噪声干扰下诊断精度降低的问题,提出一种基于双注意力机制的多尺度卷积网络(dual attention and multi-scale convolutional networks,DAMSCN)与改进的双向门控循环单元(bidirectional gated rec... 针对滚动轴承故障诊断模型在变工况和环境噪声干扰下诊断精度降低的问题,提出一种基于双注意力机制的多尺度卷积网络(dual attention and multi-scale convolutional networks,DAMSCN)与改进的双向门控循环单元(bidirectional gated recurrent unit,BiGRU)组成的故障诊断模型DAMSCN-BiGRU。首先,多尺度特征融合模块使用不同大小的卷积核,获得多种感受野,从而提取到轴承原始振动信号的多尺度特征信息,并根据重要性对其进行自适应融合,然后利用通道注意力和空间注意力组成的双注意力模块(dual attention module,DAM)对多尺度特征进行重新标定,分配注意力权重,削弱融合特征中的冗余特征;然后,增加注意力层和利用分段激活改进BiGRU进而挖掘信号的时域特征,以提高轴承故障诊断的性能;最后,通过Softmax层完成对不同故障的分类。试验结果表明,与其他智能诊断模型相比,DAMSCN-BiGRU在变工况环境下,平均诊断精度达到98.2%,在强噪声背景下仍然有着85.3%的准确率,且在不同程度的噪声强度下效果均优于其他常用模型,有利于促进滚动轴承的智能故障诊断研究和实际应用。 展开更多
关键词 滚动轴承 故障诊断 多尺度特征融合 双注意力机制 向门控循环单元(BiGRU)
下载PDF
基于密集多尺度特征和双注意力模块的皮肤病变分割 被引量:1
3
作者 费承 罗健旭 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期97-105,共9页
针对皮肤病变分割任务中病变区域大小不一、形状各异、内部像素差异大、边界模糊、周围存在气泡等问题,提出了一种基于密集多尺度特征和双注意力模块的U型分割网络DDAnet。该网络中的DenseASPP模块通过密集连接多个空洞卷积层来获取丰... 针对皮肤病变分割任务中病变区域大小不一、形状各异、内部像素差异大、边界模糊、周围存在气泡等问题,提出了一种基于密集多尺度特征和双注意力模块的U型分割网络DDAnet。该网络中的DenseASPP模块通过密集连接多个空洞卷积层来获取丰富的多尺度信息,同时由通道注意力模块(CAM)和位置注意力模块(PAM)构成的双注意力模块通过编码全局上下文信息,在通道和位置上对特征图进行重新配准,实现对相关特征的强调和对无关特征的抑制。两个模块并行连接、共同作用以提高分割精度。在ISIC2018数据集上,DDAnet的准确率(Acc)、Jaccard相似系数(JI)、Dice系数(DC)、敏感度(Sen)和特异性(Spec)指标值分别为96.75%、85.00%、91.36%、91.82%和97.42%,分割结果优于其他的分割网络,并且对于极具挑战的病例,DDAnet仍然能够产生准确、可靠的分割结果,说明其具备在临床诊断中辅助医生进行皮肤病变分割的潜力。 展开更多
关键词 皮肤病变分割 DenseASPP模块 CAM PAM 双注意力模块
下载PDF
知识图谱的双注意力机制推荐方法 被引量:1
4
作者 周北京 王海荣 +1 位作者 王怡梦 马赫 《中国科技论文》 CAS 2024年第2期178-185,223,共9页
为解决知识图谱推荐方法中存在的忽略用户个人信息,或将用户和项目采用相同注意力机制,致使用户和项目的潜在语义表达不充分的问题,提出了一种知识增强的双注意力机制推荐方法。采用交叉压缩融合单元获取用户个人信息和交互历史的潜在特... 为解决知识图谱推荐方法中存在的忽略用户个人信息,或将用户和项目采用相同注意力机制,致使用户和项目的潜在语义表达不充分的问题,提出了一种知识增强的双注意力机制推荐方法。采用交叉压缩融合单元获取用户个人信息和交互历史的潜在特征,以增强用户特征表示;使用不同注意力机制关注用户和项目的重要邻居,以增强知识图谱中的结构信息和语义信息表示。为了验证方法的有效性,在MovieLens-1M、MovieLens-20M、Book-Crossing和Last. FM这4个数据集上进行实验,并与RippletNet、KGAT、CKAN等6种方法进行对比分析。结果表明,本文方法与RippletNet、KGCN、LKGR等方法相比,受试者工作特征曲线下面积(area under the receiver operator characteristic curve,AUC)性能平均提升了5.34%。 展开更多
关键词 知识图谱 推荐方法 知识增强 双注意力机制
下载PDF
基于差异增强和双注意力Transformer的遥感图像变化检测 被引量:1
5
作者 张青月 赵杰 《无线电工程》 2024年第1期230-238,共9页
由于遥感场景中物体的复杂性,光照变化和配准误差都会影响不同时间拍摄的2个图像中目标的变化,探索不同像素之间的关系和更强大识别能力的卷积神经网络可以提高双时相遥感图像变化检测的性能。提出一个基于差异增强的和双注意力机制的Tr... 由于遥感场景中物体的复杂性,光照变化和配准误差都会影响不同时间拍摄的2个图像中目标的变化,探索不同像素之间的关系和更强大识别能力的卷积神经网络可以提高双时相遥感图像变化检测的性能。提出一个基于差异增强的和双注意力机制的Transformer神经网络模型,在孪生网络架构中的特征提取部分引入ResNeXt单元,在不增加参数复杂度的前提下提高准确率;将分层结构的Transformer编码-解码器与通道和空间双注意力模块相结合,获得更大的感受野和更强的上下文塑造能力;该网络还关注双时相图像的差异化特征,通过引入差异增强模块对每个像素进行加权,选择性地对特征进行聚合,最终生成具有高精度的遥感图像变化特征图。通过在变化检测基准数据集LEVIR-CD和DSIFN上进行实验,所提方法对不同建筑物、道路和植被变化情况的检测效果有很大提升,与现有检测模型相比,该方法在F1、IoU和OA这3个评价指标上均好于最好结果。 展开更多
关键词 遥感图像 变化检测 TRANSFORMER 双注意力机制 差异增强
下载PDF
双注意力机制的复杂场景文字识别网络 被引量:1
6
作者 宋问玉 杜文爽 +1 位作者 封宇 王丽园 《无线电工程》 2024年第2期343-350,共8页
文字识别技术在电力系统、车辆驾驶等领域应用十分广泛。随着人工智能技术的兴起和万物互联(Internet of Everything,IoE)的发展,厂商对随时随地获取复杂场景文字的需求也越来越迫切。针对文字识别环境背景复杂、视角畸变、字迹浅显和... 文字识别技术在电力系统、车辆驾驶等领域应用十分广泛。随着人工智能技术的兴起和万物互联(Internet of Everything,IoE)的发展,厂商对随时随地获取复杂场景文字的需求也越来越迫切。针对文字识别环境背景复杂、视角畸变、字迹浅显和中英文字符混杂形似等诸多问题,设计出具有文字区域提取与校正、图像增强、文本检测和文本识别的光学字符识别(Optical Character Recognition,OCR)算法框架。设计了基于双注意力机制和内容感知上采样的DBNet文本检测模块增强网络的特征提取选择能力,提高内容感知能力,设计了融入中心损失CRNN+CTC的文本识别模块增大字符之间的特征间距。实验结果表明,改进的文本检测网络在ICDAR2015数据集上准确率提升了5.09%,召回率提高2.12%,F评分提高了3.46%。在中英文文本识别数据集中,改进的文本识别网络对中英文字符识别准确率提高了1.2%。 展开更多
关键词 路标识别 双注意力机制 文本检测 文本识别
下载PDF
融合ASPP与双注意力机制的建筑物提取模型 被引量:1
7
作者 于明洋 徐海青 +2 位作者 张文焯 徐帅 周放亮 《航天返回与遥感》 CSCD 北大核心 2024年第1期136-146,共11页
精准高效地从高分辨率遥感影像中提取建筑物信息对国土规划和地图制图意义重大,近年来基于卷积神经网络进行建筑物信息提取已经取得了很大的进展,然而在处理高分辨率遥感影像时仍存在影像的高级语义特征利用不够充分,难以获得细节丰富... 精准高效地从高分辨率遥感影像中提取建筑物信息对国土规划和地图制图意义重大,近年来基于卷积神经网络进行建筑物信息提取已经取得了很大的进展,然而在处理高分辨率遥感影像时仍存在影像的高级语义特征利用不够充分,难以获得细节丰富高精度分割影像的问题。文章针对以上问题提出了一种用于建筑物自动提取的深度学习网络结构空洞空间与通道感知网络(Atrous Space and Channel Perception Network,ASCP-Net)。该模型将空洞空间金子塔池化(Atrous Spatial Pyramid Pooling, ASPP)和空间与通道注意力(Spatial and Channel Attention, SCA)模块融入到编码器-解码器结构中,通过ASPP模块来捕获和聚合多尺度上下文信息,采用SCA模块选择性增强特定位置和通道中更有用的信息,并将高低层特征信息输入解码网络完成建筑物信息的高效提取。在WHU建筑数据集(WHU Building Dataset)上进行实验,结果表明:文章提出的方法总体精度和F1评分分别达到了97.4%和94.6%,相比其他模型能够获得更清晰的建筑物边界,尤其对图像边缘不完整建筑的提取效果较好,有效提升了建筑物提取的精度和完整性。 展开更多
关键词 高分辨率遥感影像 双注意力机制 空洞卷积 建筑物提取
下载PDF
结合超轻量级双注意力模块的ShuffleNetV2面部表情识别
8
作者 林恩惠 王凡 谭晓玲 《电子测量技术》 北大核心 2024年第10期168-174,共7页
针对面部表情识别领域中难以同时实现低参数量与高准确率的挑战,提出了一种结合注意力机制的ShuffleNetV2网络的面部表情识别方法。该方法基于ShuffleNetV2架构,通过微调模型将Relu激活函数替换为PRelu激活函数,进一步提升了模型的特征... 针对面部表情识别领域中难以同时实现低参数量与高准确率的挑战,提出了一种结合注意力机制的ShuffleNetV2网络的面部表情识别方法。该方法基于ShuffleNetV2架构,通过微调模型将Relu激活函数替换为PRelu激活函数,进一步提升了模型的特征捕获与分类能力。此外,本文创新性地引入了一种超轻量级双注意力模块LDAM,该模块结合了DCAM注意力机制与空间注意力机制,并通过捷径连接技术集成到优化后的ShuffleNetV2模型中,以增强模型对细节特征的识别能力及分类效果。在FER2013和CK+两大公认的面部表情识别数据集上的实验结果显示,本方法分别达到了69.12%和94.77%的识别准确率,同时保持了低至1.25的模型参数量。这一成果不仅展示了在保持模型轻量化的同时提升识别性能的可能性,而且通过实验验证了所提出方法的高效性和实用性。 展开更多
关键词 面部表情识别方法的改进 激活函数 空间注意力机制 轻量化模型 超轻量级双注意力模块
原文传递
结合组像素嵌入的双注意力高光谱图像分类
9
作者 谭云飞 李明 +2 位作者 罗勇航 石超山 文贵豪 《计算机技术与发展》 2024年第9期147-153,共7页
近年来,基于深度学习的框架在高光谱图像分类领域中取得了令人满意的结果。然而,多数方法仍使用卷积神经网络作为主干网络,其存在感受野过小,对特征信息的挖掘不充分,序列建模的能力较弱,模型复杂和分类精度低等问题。为克服上述局限性... 近年来,基于深度学习的框架在高光谱图像分类领域中取得了令人满意的结果。然而,多数方法仍使用卷积神经网络作为主干网络,其存在感受野过小,对特征信息的挖掘不充分,序列建模的能力较弱,模型复杂和分类精度低等问题。为克服上述局限性,该文提出一种结合组像素嵌入的双注意力高光谱图像分类的方法。该方法主要分成三个部分,首先,使用含有点卷积组和深度卷积组的通道空间卷积分离模块来高效学习空间光谱的特征信息;其次,添加通道空间双注意力机制,抑制冗余信息的干扰,增强高光谱图像空间与光谱的特征权重;最后,通过组像素嵌入Transformer来进一步强化空间与光谱之间的联系,建立全局长距离依赖关系,缓解精度下降的问题,保证了网络良好的分类性能。实验结果表明,该方法与现有的网络模型相比具有更优越的性能,在Pavia University和WHU-Hi-LongKou两个数据集中的总体准确率分别达到99.26%和99.73%。 展开更多
关键词 高光谱图像分类 卷积神经网络 通道空间卷积分离 双注意力机制 组像素嵌入Transformer
下载PDF
多尺度双注意力的图像超分辨率重建方法
10
作者 王鑫 余磊 《计算机与现代化》 2024年第8期77-87,共11页
针对当前已有的图像超分辨率重建方法存在提取的特征信息单一、特征利用率低等问题,提出一种多尺度双注意力的图像超分辨率重建方法(MSDA)。首先,该方法通过多尺度特征提取块,提取输入图像不同尺度的特征信息;其次,引入双注意力机制使... 针对当前已有的图像超分辨率重建方法存在提取的特征信息单一、特征利用率低等问题,提出一种多尺度双注意力的图像超分辨率重建方法(MSDA)。首先,该方法通过多尺度特征提取块,提取输入图像不同尺度的特征信息;其次,引入双注意力机制使网络快速关注图像高频信息区域,利用跳跃连接来减少特征信息在深层次网络递进过程中的信息丢失;最后,使用dropout层来均衡化特征通道重要性,防止网络协同适应,提升模型的泛化性。在公共测试集Set5、Set14、BSD100、Urban100、Manga109上的实验结果表明:MSDA取得了较好的效果,重建后的图像具有更多高频信息,纹理细节丰富,观感上更接近原始高分辨率图像。 展开更多
关键词 超分辨率 多尺度特征 双注意力 跳跃连接
下载PDF
基于双注意力机制和元迁移学习的个性化图像美学评价方法
11
作者 吴圆 洪文浩 +5 位作者 刘鹏 孙恺璞 李慧 鲁新宇 张留洋 马健 《工业控制计算机》 2024年第4期103-105,共3页
个性化图像美学评价针对不同用户之间的个性化审美差异进行感知评估,取得了广泛的应用。然而,目前存在的大众化图像美学模型无法很好地适应小样本个性化图像美学评价任务。为解决该问题,提出了一种融合双注意力机制的EfficientNet网络... 个性化图像美学评价针对不同用户之间的个性化审美差异进行感知评估,取得了广泛的应用。然而,目前存在的大众化图像美学模型无法很好地适应小样本个性化图像美学评价任务。为解决该问题,提出了一种融合双注意力机制的EfficientNet网络和元学习的PIAA方法(DA-EBLG-PIAA),将单个用户的个性化打分分别组成不同的单个任务,使用EfficientNet网络作为主干网络,适应小样本学习任务,并融合了双注意力机制,更好地捕捉了空间和通道维度中的全局特征依赖关系。实验结果表明提出的个性化美学评价方法性能优于许多当前存在的模型,可以有效地应用于个性化图像美学感知评价。 展开更多
关键词 个性化图像美学评价 元学习 EfficientNet 双注意力机制
下载PDF
基于双注意力深度学习的在线资源推荐 被引量:2
12
作者 李会芬 焦小刚 黄丽霞 《南京理工大学学报》 CAS CSCD 北大核心 2023年第2期221-227,共7页
为了提高在线资源推荐的性能,采用深度学习卷积神经网络(Convolutional neural network,CNN)进行资源推荐,同时对资源-用户特征进行双注意力机制特征提取,以进一步提高推荐精准度。对资源-用户特征进行编码并初始化,分别进行通道注意力... 为了提高在线资源推荐的性能,采用深度学习卷积神经网络(Convolutional neural network,CNN)进行资源推荐,同时对资源-用户特征进行双注意力机制特征提取,以进一步提高推荐精准度。对资源-用户特征进行编码并初始化,分别进行通道注意力机制运算和空间注意力机制运算。将两个注意力机制的运算结果加权求和得到新的用户-资源特征。建立基于CNN的在线资源推荐模型,并以资源和用户的最小特征差作为损失函数进行迭代优化,从而求解出CNN网络参数。通过双注意力机制的用户-资源特征输入到CNN模型,并执行训练以获得符合用户需求的推荐结果。试验结果表明,通过合理设置双注意力机制通道数及卷积核尺寸等参数,可以有效提高双注意力CNN的推荐性能。与常用资源推荐算法相比,所提算法在推荐准确度及稳定性方面均具有一定的提升。 展开更多
关键词 资源推荐 卷积神经网络 双注意力 通道注意力 空间注意力
下载PDF
通道分离双注意力机制的目标检测算法 被引量:11
13
作者 赵珊 郑爱玲 +1 位作者 刘子路 高雨 《计算机科学与探索》 CSCD 北大核心 2023年第5期1112-1125,共14页
对于两阶段目标检测算法中模型存在检测精度低、小目标漏检率高等问题,提出通道分离双注意力机制的目标检测算法,通过改进Faster+FPN主干网络来提高小目标的检测精度。首先针对神经网络不能自动学习特征间的重要性问题,在通道分离过程... 对于两阶段目标检测算法中模型存在检测精度低、小目标漏检率高等问题,提出通道分离双注意力机制的目标检测算法,通过改进Faster+FPN主干网络来提高小目标的检测精度。首先针对神经网络不能自动学习特征间的重要性问题,在通道分离过程中提出双注意力机制来构建深度神经网络,另结合分组卷积、空洞卷积等技术减少网络参数。其次针对高分辨率特征经过深度CNN后导致的信息丢失问题,通过添加细节提取模块以及通道注意力特征融合模块来提取更多的细节特征。最后考虑到一般损失函数不可重点评估目标物位置的置信度,结合KL散度进行损失函数优化,通过训练使得预测分布更接近真实分布,有效地解决了神经网络直接用于目标检测存在的问题。采用PASCAL VOC2007、KITTI以及Pedestrian三类数据集对网络进行训练,并将提出的模型与多个目标检测算法进行对比。实验结果表明,该算法能够高效地对图像进行识别,且具有较高的检测精度。 展开更多
关键词 通道分离 双注意力机制 特征金字塔网络(FPN) KL散度 目标检测
下载PDF
基于双注意力YOLOv5的场景藏文检测 被引量:1
14
作者 才让当知 黄鹤鸣 +1 位作者 范玉涛 樊永红 《计算机工程与设计》 北大核心 2023年第11期3411-3419,共9页
为有效提高场景藏文文本检测性能,提出一种基于双注意力YOLOv5的场景藏文检测框架,简称为YOLOv5 Dual-attention。通过在YOLOv5模型上下采样层之间采用背景抑制模块,聚合多尺度的初始特征,抑制卷积特征中的背景干扰;在YOLOv5的颈部和检... 为有效提高场景藏文文本检测性能,提出一种基于双注意力YOLOv5的场景藏文检测框架,简称为YOLOv5 Dual-attention。通过在YOLOv5模型上下采样层之间采用背景抑制模块,聚合多尺度的初始特征,抑制卷积特征中的背景干扰;在YOLOv5的颈部和检测头中间嵌入卷积注意力提高卷积提取特征的能力,使网络具有精确推断文本的能力。实验结果表明,在二分类MSTD500测试集上,改进后的模型YOLOv5x Dual-attention+α-IoU对单类藏文场景文本检测的F1达到了84.65%,比目前最好的同类检测结果高出12.65个百分点,有效降低了文本目标漏检和误检可能性。 展开更多
关键词 藏文检测 场景文本检测 通道注意力 空间注意力 双注意力 损失函数 小目标文本检测
下载PDF
基于多通道双注意力网络的COVID-19图像分类 被引量:1
15
作者 朱玲 王明辉 《重庆理工大学学报(自然科学)》 北大核心 2023年第6期222-231,共10页
针对逆转录聚合酶链反应对新冠肺炎(COVID-19)的检测存在一定的假阴性率、消耗时间过长等问题,提出了一种基于深度迁移学习的多通道双注意力网络(MDA-Net)对肺部图像进行检测。在深度迁移学习的框架下,引入了多通道双注意力模块,利用多... 针对逆转录聚合酶链反应对新冠肺炎(COVID-19)的检测存在一定的假阴性率、消耗时间过长等问题,提出了一种基于深度迁移学习的多通道双注意力网络(MDA-Net)对肺部图像进行检测。在深度迁移学习的框架下,引入了多通道双注意力模块,利用多个通道的位置关系,融合不同尺度的图像特征。将注意力机制和轻量级卷积神经网络相结合,扩大MDA-Net感受野,提高了对图像复杂区域和边缘区域的特征提取能力。MDA-Net在不同数据集上进行了实验,二分类任务和三分类任务分别能取得99.25%和99.39%的平均准确率,表现出良好的分类性能。 展开更多
关键词 COVID-19 深度迁移学习 多通道双注意力 卷积神经网络
下载PDF
一种双注意力融合生成对抗网络的水下图像增强模型 被引量:1
16
作者 胡海峰 李凤英 《桂林电子科技大学学报》 2023年第5期371-380,共10页
针对水下图像在生成过程中会受到水下杂质污染以及光的吸收等问题,提出了一种双注意力融合生成对抗网络的水下图像增强模型。该模型使用了最新的Pix2Pix网络架构,并通过构建的双注意力机制结构建立丰富的上下文信息来处理水下图像,在模... 针对水下图像在生成过程中会受到水下杂质污染以及光的吸收等问题,提出了一种双注意力融合生成对抗网络的水下图像增强模型。该模型使用了最新的Pix2Pix网络架构,并通过构建的双注意力机制结构建立丰富的上下文信息来处理水下图像,在模型生成器UNet网络首部增加了改进型Non-local模块,从多尺度角度获取更多全局特征,从而得到更加清晰的图像,在生成器尾部引入了Transformer模块,通过其优异的多头注意力块和多层感知机等结构来提升模型综合性能,从而进一步提升模型语义信息提取能力。实验结果表明,该模型在基准数据集EUVP上的峰值信噪比、结构相似性、水下图像质量评价指标相比其他模型平均提升了5.83%、4.88%和18.02%,而在基准数据集EUVP上的相应指标平均提升了6.21%、17.33%和15.96%。在主观可视化结果下,该模型也能适当处理图像退化问题,使图像呈现更好的清晰度和对比度。 展开更多
关键词 生成对抗网络 全局信息 改进型Non-local模块 双注意力融合 水下图像增强
下载PDF
基于双注意力生成对抗网络的煤流异物智能检测方法 被引量:1
17
作者 曹正远 蒋伟 方成辉 《工矿自动化》 CSCD 北大核心 2023年第12期56-62,共7页
在煤炭开采过程中混入的异物可能会导致输送带连接处堵塞甚至输送带撕裂等事故,现有的机器学习算法大多采用监督学习的方式自动识别物品类别,而在真实工矿场景下,异常样本稀缺,易导致建模数据集存在严重的样本分布不平衡且显著特征丢失... 在煤炭开采过程中混入的异物可能会导致输送带连接处堵塞甚至输送带撕裂等事故,现有的机器学习算法大多采用监督学习的方式自动识别物品类别,而在真实工矿场景下,异常样本稀缺,易导致建模数据集存在严重的样本分布不平衡且显著特征丢失的问题。针对上述问题,提出了一种基于双注意力生成对抗网络(DA-GANomaly)的煤流异物智能检测方法。该方法采用半监督学习的方式,仅需要正常样本完成异物检测模型训练,有效解决了因样本分布不平衡造成的识别精度低、鲁棒性差的问题;在Skip-GANomaly的基础上引入双注意力机制,增强了编码器与解码器之间的信息交流,以抑制无关特征和噪声,同时突出有利于区分异常样本的感兴趣特征,进一步提高模型分类的准确性。实验结果表明:DA-GANomaly模型的分类精确率为79.5%,召回率为83.2%,精确率-召回率曲线下面积(AUPRC)为85.1%;与AnoGAN等5种经典异常检测模型相比,DA-GANomaly模型的综合性能最佳。 展开更多
关键词 煤流异物检测 带式输送机 机器视觉 深度学习 生成对抗网络 双注意力机制 半监督学习
下载PDF
基于关系图卷积神经网络与双注意力的方面级情感分析
18
作者 方云龙 李卫疆 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第6期1164-1173,共10页
现有基于句法依存树的方面级情感分析模型大多只关注了句子的句法依赖结构,忽视了单词间的位置语义关系,同时现有模型只关注图卷积神经网络最后一层的输出,不能从不同的图卷积层学习。针对这个问题,提出了一种基于关系图卷积神经网络与... 现有基于句法依存树的方面级情感分析模型大多只关注了句子的句法依赖结构,忽视了单词间的位置语义关系,同时现有模型只关注图卷积神经网络最后一层的输出,不能从不同的图卷积层学习。针对这个问题,提出了一种基于关系图卷积神经网络与双注意力的方面级情感分析模型。通过关系感知注意力抽取文本的位置语义关系,并与句法依存树结合,获取文本中丰富的结构信息,使用图卷积神经网络提取方面词的深层表示,使用双注意力机制融合不同图卷积层的输出,结合方面词的深层表示和上下文信息进行情感分类。在semval14和twitter数据集上的实验结果表明,与基准实验相比,关系图卷积网络和双注意力结构可以有效地提高模型的整体性能。 展开更多
关键词 方面级情感分析 关系感知注意力 双注意力 图卷积神经网络
下载PDF
基于生成对抗网络与双注意力的糖网分类方法 被引量:1
19
作者 郭妮妮 乔钢柱 +1 位作者 张光华 王龙 《中北大学学报(自然科学版)》 CAS 2023年第1期39-47,共9页
针对在糖尿病视网膜病变分类过程中,因为数据集不均衡、类间特征相似、类内又存有差异,从而导致最终分类准确率不高的问题,提出了一种结合生成对抗网络与双注意力的分类方法AIDnet。首先,在ACGAN网络后加入转置卷积进行改进,生成轻度NPD... 针对在糖尿病视网膜病变分类过程中,因为数据集不均衡、类间特征相似、类内又存有差异,从而导致最终分类准确率不高的问题,提出了一种结合生成对抗网络与双注意力的分类方法AIDnet。首先,在ACGAN网络后加入转置卷积进行改进,生成轻度NPDR、重度NPDR、 PDR的图像平衡数据集;其次,在InceptionV3网络的基础上加入双注意力机制(DAM),在减少计算开销的同时提升性能;最后,利用焦点损失函数增加难以识别病变的权重,减少易识别病变的权重,高效提取DR图像的细节特征。实验结果表明,AIDnet网络在Kaggle数据集上的自动分类准确率为89.53%,敏感度为82.45%,特异性为93.26%;在Messidor2上的准确率达到90.31%,敏感度达到89.28%,特异性达到93.31%。较其他分类方法而言,AIDnet分类效果良好,有助于提高糖尿病视网膜病变的分类准确率。 展开更多
关键词 糖尿病视网膜病变分类 数据集不均衡 ACGAN 双注意力机制 InceptionV3 焦点损失
下载PDF
结合双注意力模块和ShuffleNet模型的微表情识别
20
作者 李飞 汪国强 尤美明 《黑龙江大学自然科学学报》 CAS 2023年第4期468-478,共11页
针对微表情运动的局限性和识别效果不理想的问题,提出了一种结合双注意力模块和ShuffleNet模型的微表情识别方法。该方法将提取的峰值帧的水平和垂直光流图,以通道叠加的方式连接送进所设计的网络进行训练。利用高效且轻量化的ShuffleNe... 针对微表情运动的局限性和识别效果不理想的问题,提出了一种结合双注意力模块和ShuffleNet模型的微表情识别方法。该方法将提取的峰值帧的水平和垂直光流图,以通道叠加的方式连接送进所设计的网络进行训练。利用高效且轻量化的ShuffleNet模型堆叠的卷积神经网络(Convolutional neural network,CNN),极大地降低了训练的参数量,在ShuffleNet网络中加入可自适应特征细化的双注意力模块,使得网络在通道和空间维度寻找微表情运动的有用特征信息。在通道注意力模块中,使用一维卷积融合全局池化后的一维通道特征来保持相邻通道的相关性;在空间注意力模块中,采用较小的3×3和5×5卷积核提取不同的空间信息并融合。实验结果表明,在微表情识别方面,相比于基准方法的三个正交平面的局部二值模式(Local binary patterns from three orthogonal planes,LBP-TOP),未加权F1值(Unweighted F1-score,UF1)和未加权平均召回率(Unweighted average recall,UAR)分别提高了0.1445和0.1556,识别性能有很大的提升。 展开更多
关键词 微表情识别 深度学习 光流法 双注意力模块 ShuffleNet模型 卷积神经网络
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部