Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent year...Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.展开更多
Cerium-doped zirconium-based NH_(2)-UiO-66 nanoparticles were synthesized in ionic liquid 1-butyl-3-methylimidazolium acetate at room temperature.The crystal structure and morphology were studied using X-ray diffracti...Cerium-doped zirconium-based NH_(2)-UiO-66 nanoparticles were synthesized in ionic liquid 1-butyl-3-methylimidazolium acetate at room temperature.The crystal structure and morphology were studied using X-ray diffraction,infrared spectroscopy,scanning electron microscopy and transmission electron microscopy.The valence state and distribution of elements in the obtained materials were examined using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy.Catalytic performance studies show that the cerium-doped NH_(2)-UiO-66 exhibits improved catalytic efficiency in the cycloaddition reaction of 1,2-butylene oxide and carbon dioxide than pure NH_(2)-UiO-66.Studies on the photoelectric properties indicate that the cerium-doped NH_(2)-UiO-66 catalyst possesses strong photocurrent response,low interfacial charge transfer resistance,narrow band gap,and low flat band potential.This work provides a new approach of synthesizing high-performance catalyst for photocatalytic CO_(2) cycloaddition.展开更多
The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot elec...The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot electrons and phonons)transfers on the interface between two metals.We have designed and synthesized Au@Cu bimetallic nanoparticles with Au as core and Cu as shell.By using transient absorption spectroscopy,we find that there are two plasmon induced heat funneling processes from Au core to Cu shell.One is the electron temperature equilibrium(electron heat transfer)with equilibration time of~560 fs.The other is the lattice temperature equilibrium(lattice heat transfer)with equilibration time of~13 ps.This plasmon induced heat funneling may be universal in similar bimetallic nanostructures,so our finding could contribute to further understanding the catalytic mechanism of bimetallic plasmonic photothermal catalysis.展开更多
In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capa...In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capacity of 605.8 mA b g-i at a current density of 100 mA g^-1, far beyond the performance of the corresponding monometallic Co-ZIF- 67 and Zn-ZIF-8. Ex-situ synchrotron soft X-ray absorption spectroscopy, X-ray diffraction, and electron paramagnetic resonance techniques were employed to explore the Li^storage mechanism. The superior performance of CoZn-ZIF over Co-ZIF-67 and Zn-ZIF-8 could be mainly attributed to lithiation and delithiation of nitrogen atoms, accompanied by the breakage and recoordination of metal nitrogen bond. Morever, a few metal nitrogen bonds without recoordination will lead to the amorphization of CoZn-ZIF and the formation of few nitrogen radicals.展开更多
Reaction of unique [W(CN)6(phen)]- with a magnetically anisotropic Mn Schiff base yielded a wv(5d)-Mnm(3d) bimetallic compound with a linear chain structure. The magnetic properties of the chain complex featur...Reaction of unique [W(CN)6(phen)]- with a magnetically anisotropic Mn Schiff base yielded a wv(5d)-Mnm(3d) bimetallic compound with a linear chain structure. The magnetic properties of the chain complex feature a ferrimagnetic behavior as well as slow magnetic relaxation typical for a single-chain magnet.展开更多
We successfully investigate an optical bistability phenomenon in a layered structure consisting of Kretschmann configuration involving the Kerr-type nonlinear and the silver film. Pure theoretical approaches are emplo...We successfully investigate an optical bistability phenomenon in a layered structure consisting of Kretschmann configuration involving the Kerr-type nonlinear and the silver film. Pure theoretical approaches are employed to investigate that the surface plasmon could easily be coupled and both the reflection and transmission curves versus the incident intensity forms optical bistability. The transmission curves are greatly influenced by the thickness of the second silver film. These results may be useful for designing novel surface plasmon-based optical devices and will be essential for future classical and quantum information processes.展开更多
文摘Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.
文摘Cerium-doped zirconium-based NH_(2)-UiO-66 nanoparticles were synthesized in ionic liquid 1-butyl-3-methylimidazolium acetate at room temperature.The crystal structure and morphology were studied using X-ray diffraction,infrared spectroscopy,scanning electron microscopy and transmission electron microscopy.The valence state and distribution of elements in the obtained materials were examined using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy.Catalytic performance studies show that the cerium-doped NH_(2)-UiO-66 exhibits improved catalytic efficiency in the cycloaddition reaction of 1,2-butylene oxide and carbon dioxide than pure NH_(2)-UiO-66.Studies on the photoelectric properties indicate that the cerium-doped NH_(2)-UiO-66 catalyst possesses strong photocurrent response,low interfacial charge transfer resistance,narrow band gap,and low flat band potential.This work provides a new approach of synthesizing high-performance catalyst for photocatalytic CO_(2) cycloaddition.
基金supported by the National Naural Science Foudation of China(No.21873013 and No.22273006).
文摘The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot electrons and phonons)transfers on the interface between two metals.We have designed and synthesized Au@Cu bimetallic nanoparticles with Au as core and Cu as shell.By using transient absorption spectroscopy,we find that there are two plasmon induced heat funneling processes from Au core to Cu shell.One is the electron temperature equilibrium(electron heat transfer)with equilibration time of~560 fs.The other is the lattice temperature equilibrium(lattice heat transfer)with equilibration time of~13 ps.This plasmon induced heat funneling may be universal in similar bimetallic nanostructures,so our finding could contribute to further understanding the catalytic mechanism of bimetallic plasmonic photothermal catalysis.
基金supported by the National Natural Science Foundation of China for Excellent Young Scholars(21522303)the National Natural Science Foundation of China(21373086)+3 种基金the Basic Research Project of Shanghai Science and Technology Committee(14JC1491000)the Large Instruments Open Foundation of East China Normal Universitythe National Key Basic Research Program of China(2013CB921800)the National High Technology Research and Development Program of China(2014AA123401)
文摘In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capacity of 605.8 mA b g-i at a current density of 100 mA g^-1, far beyond the performance of the corresponding monometallic Co-ZIF- 67 and Zn-ZIF-8. Ex-situ synchrotron soft X-ray absorption spectroscopy, X-ray diffraction, and electron paramagnetic resonance techniques were employed to explore the Li^storage mechanism. The superior performance of CoZn-ZIF over Co-ZIF-67 and Zn-ZIF-8 could be mainly attributed to lithiation and delithiation of nitrogen atoms, accompanied by the breakage and recoordination of metal nitrogen bond. Morever, a few metal nitrogen bonds without recoordination will lead to the amorphization of CoZn-ZIF and the formation of few nitrogen radicals.
基金supported by the National Research Foundation of Korea Funded by the Korean Government (2011-0003264)by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) Funded by the Ministry of Education, Science and Technology (NRF20110018396)
文摘Reaction of unique [W(CN)6(phen)]- with a magnetically anisotropic Mn Schiff base yielded a wv(5d)-Mnm(3d) bimetallic compound with a linear chain structure. The magnetic properties of the chain complex feature a ferrimagnetic behavior as well as slow magnetic relaxation typical for a single-chain magnet.
基金supported by the National Basic Research Program of China (Grant No. 2010CB923202)
文摘We successfully investigate an optical bistability phenomenon in a layered structure consisting of Kretschmann configuration involving the Kerr-type nonlinear and the silver film. Pure theoretical approaches are employed to investigate that the surface plasmon could easily be coupled and both the reflection and transmission curves versus the incident intensity forms optical bistability. The transmission curves are greatly influenced by the thickness of the second silver film. These results may be useful for designing novel surface plasmon-based optical devices and will be essential for future classical and quantum information processes.