针对风速的不确定性、时变和非线性特征,提出一种用于风速预测的基于受限玻尔兹曼机和粗糙集理论的区间概率分布学习(Interval Probability Distribution Learning, IPDL)模型。该模型包含一组区间隐藏变量,利用Gibbs抽样和对比散度来...针对风速的不确定性、时变和非线性特征,提出一种用于风速预测的基于受限玻尔兹曼机和粗糙集理论的区间概率分布学习(Interval Probability Distribution Learning, IPDL)模型。该模型包含一组区间隐藏变量,利用Gibbs抽样和对比散度来获取风速的概率分布,结合模糊Ⅱ型推理系统(Fuzzy Type Ⅱ Inference System, FT2IS),设计一个有监督回归的实值区间深度置信网络(Interval Deep Belief Network, IDBN)。算例结果表明,该方法结合了IPDL和FT2IS的鲁棒性,风速预测性能较好。展开更多
文摘面向用户生成内容(User generated content,UGC)的进化搜索在大数据及个性化服务领域已引起广泛关注,其关键在于基于多源异构用户生成内容构建用户认知偏好模型,进而设计高效的进化搜索机制.针对此,提出融合注意力机制(Attention mechanism,AM)的受限玻尔兹曼机(Restricted Boltzmann machine,RBM)偏好认知代理模型构建机制,并应用于交互式分布估计算法(Interactive estimation of distribution algorithm,IEDA),设计含用户生成内容的个性化进化搜索策略.基于用户群体提供的文本评论,以及搜索物品的类别文本,构建无监督受限玻尔兹曼机模型提取广义特征;设计注意力机制,融合广义特征,获取对用户认知偏好高度相关特征的集成;利用该特征再次训练受限玻尔兹曼机,实现对用户偏好认知代理模型的构建;根据用户偏好认知代理模型,给出交互式分布估计算法概率更新模型以及物品适应度评价函数,实现物品个性化进化搜索.算法在亚马逊个性化搜索实例的应用验证了用户认知偏好模型的可靠性,以及个性化进化搜索的有效性.
文摘针对风速的不确定性、时变和非线性特征,提出一种用于风速预测的基于受限玻尔兹曼机和粗糙集理论的区间概率分布学习(Interval Probability Distribution Learning, IPDL)模型。该模型包含一组区间隐藏变量,利用Gibbs抽样和对比散度来获取风速的概率分布,结合模糊Ⅱ型推理系统(Fuzzy Type Ⅱ Inference System, FT2IS),设计一个有监督回归的实值区间深度置信网络(Interval Deep Belief Network, IDBN)。算例结果表明,该方法结合了IPDL和FT2IS的鲁棒性,风速预测性能较好。