Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1 D. The Zn O: Al film shows a high efficiency than SnO_2:F. Moreover, the thinner window layer and lower defect densi...Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1 D. The Zn O: Al film shows a high efficiency than SnO_2:F. Moreover, the thinner window layer and lower defect density of Cd S films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field(BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.展开更多
文摘Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1 D. The Zn O: Al film shows a high efficiency than SnO_2:F. Moreover, the thinner window layer and lower defect density of Cd S films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field(BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.