This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of ...This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.展开更多
基金supported by the National Nature Science Foundation of China under Grants Nos.60934006 and 61104136the Shandong Provincial Natural Science Foundation under Grant No.ZR2010FQ002+1 种基金the School Foundation of Qufu Normal University under Grant No.XJ200913the Scientific Research Foundation of Qufu Normal University
文摘This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.