为了预测深基坑支护桩水平变形的长期发展规律,在卷积神经网络(convolutional neural network,简称CNN)数据空间特征提取基础上,结合长短时记忆神经网络(long and short term memory,简称LSTM)分析数据的时序性和注意力机制(attention m...为了预测深基坑支护桩水平变形的长期发展规律,在卷积神经网络(convolutional neural network,简称CNN)数据空间特征提取基础上,结合长短时记忆神经网络(long and short term memory,简称LSTM)分析数据的时序性和注意力机制(attention mechanism,简称AM)的划分特征权重,构建了能够预测支护桩变形的AM-CNN-LSTM模型。以北京地区某深基坑工程为背景,基于灰色关联方法明确了影响支护桩最大变形的因素,通过构建的模型分析支护桩的单点变形规律,并与反向传播神经网络(back propagation neural network,简称BPNN)、CNN和传统CNN-LSTM模型的预测所得结果进行比较分析。研究结果表明:支护桩最大变形值与深基坑开挖深度、临空天数、支撑内力、土壤性质、桩的尺寸和嵌固深度等因素关联度较高;AM机制显著提升了初始数据信息挖掘深度和变形预测精度,通过梯度下降法不断更新直至满足误差要求;与BPNN、CNN及CNN-LSTM模型相比,AM-CNN-LSTM模型的应用对于支护桩的长期变形预测稳定性较好;通过与实测数据对比,AM-CNN-LSTM模型的预测精度误差在5%~10%以内。展开更多
文摘为了预测深基坑支护桩水平变形的长期发展规律,在卷积神经网络(convolutional neural network,简称CNN)数据空间特征提取基础上,结合长短时记忆神经网络(long and short term memory,简称LSTM)分析数据的时序性和注意力机制(attention mechanism,简称AM)的划分特征权重,构建了能够预测支护桩变形的AM-CNN-LSTM模型。以北京地区某深基坑工程为背景,基于灰色关联方法明确了影响支护桩最大变形的因素,通过构建的模型分析支护桩的单点变形规律,并与反向传播神经网络(back propagation neural network,简称BPNN)、CNN和传统CNN-LSTM模型的预测所得结果进行比较分析。研究结果表明:支护桩最大变形值与深基坑开挖深度、临空天数、支撑内力、土壤性质、桩的尺寸和嵌固深度等因素关联度较高;AM机制显著提升了初始数据信息挖掘深度和变形预测精度,通过梯度下降法不断更新直至满足误差要求;与BPNN、CNN及CNN-LSTM模型相比,AM-CNN-LSTM模型的应用对于支护桩的长期变形预测稳定性较好;通过与实测数据对比,AM-CNN-LSTM模型的预测精度误差在5%~10%以内。