The damper is capable of providing a continuously variable dampering force/torque in response to a magnetic field. It consists of an upside cap and an underside cap with a rotor located between them, the magneto-rheol...The damper is capable of providing a continuously variable dampering force/torque in response to a magnetic field. It consists of an upside cap and an underside cap with a rotor located between them, the magneto-rheological (MR) fluid is filled into the gaps between the rotor and the caps. When the viscosity of the MR fluid increases under the influence of the magnetic field, the movement of the rotor will be resisted. The output torque is made up of the torque caused by the magnetic field, the torque caused by the plastic viscosity of the MR fluid, and the torque caused by the coulomb friction. The viscous torque can be calculated by a simple method and the frictional torque can be obtained by experiments. The torque dependent on the magnetic field is obtained by electromagnetic finite dement analysis. Experiments are done on the damper prototype and the validity of the design is verified.展开更多
Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata ...Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.展开更多
The endochronic equations proposed by Valanis (1980) were extended to a finite deformation range. Jaumanns rate, Fus rate and Wus rate were incorporated into the endochronic equations to analyze simple shear finite de...The endochronic equations proposed by Valanis (1980) were extended to a finite deformation range. Jaumanns rate, Fus rate and Wus rate were incorporated into the endochronic equations to analyze simple shear finite deformation. Incremental equations and numerical solutions are deduced for three endochronic objective models. The results show that an oscillatory shear stress response to a monotonically increasing shear strain occurs when the Jaumanns rate objective model is employed for endochronic materials. The oscillatory response is dependent on the adopted objective rate. Compared with the Jaumanns rate, the Fus rate and the Wus rate satisfy the restrictions to elastic-plastic constitutive relations and are in agreement with the experimental results.展开更多
The authors discovered in first time that the weight of materials or its gravitational force by earth related to its temperature and its ferromagnetism. An experiment was designed to elevate the temperatures of six di...The authors discovered in first time that the weight of materials or its gravitational force by earth related to its temperature and its ferromagnetism. An experiment was designed to elevate the temperatures of six different materials (Au, Ag, Cu, Fe, Al, Ni) up to 600 ℃and precisely measured their weights. It is found all the materials weigh about 0.33 ‰ - 0. 82 ‰ less. For example the weight of silver sample weighted by a precision electronic scale in a manner of special design decreases about 0.8 ‰, when its temperature is elevated to 600 ℃. Thus different metals' gravitational forces or weights are adjusted with temperature variation.展开更多
基金The National Basic Research Program of China(973Program) (No2002CB312102)the National Natural ScienceFoundation of China (No60675047)
文摘The damper is capable of providing a continuously variable dampering force/torque in response to a magnetic field. It consists of an upside cap and an underside cap with a rotor located between them, the magneto-rheological (MR) fluid is filled into the gaps between the rotor and the caps. When the viscosity of the MR fluid increases under the influence of the magnetic field, the movement of the rotor will be resisted. The output torque is made up of the torque caused by the magnetic field, the torque caused by the plastic viscosity of the MR fluid, and the torque caused by the coulomb friction. The viscous torque can be calculated by a simple method and the frictional torque can be obtained by experiments. The torque dependent on the magnetic field is obtained by electromagnetic finite dement analysis. Experiments are done on the damper prototype and the validity of the design is verified.
文摘Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.
文摘The endochronic equations proposed by Valanis (1980) were extended to a finite deformation range. Jaumanns rate, Fus rate and Wus rate were incorporated into the endochronic equations to analyze simple shear finite deformation. Incremental equations and numerical solutions are deduced for three endochronic objective models. The results show that an oscillatory shear stress response to a monotonically increasing shear strain occurs when the Jaumanns rate objective model is employed for endochronic materials. The oscillatory response is dependent on the adopted objective rate. Compared with the Jaumanns rate, the Fus rate and the Wus rate satisfy the restrictions to elastic-plastic constitutive relations and are in agreement with the experimental results.
文摘The authors discovered in first time that the weight of materials or its gravitational force by earth related to its temperature and its ferromagnetism. An experiment was designed to elevate the temperatures of six different materials (Au, Ag, Cu, Fe, Al, Ni) up to 600 ℃and precisely measured their weights. It is found all the materials weigh about 0.33 ‰ - 0. 82 ‰ less. For example the weight of silver sample weighted by a precision electronic scale in a manner of special design decreases about 0.8 ‰, when its temperature is elevated to 600 ℃. Thus different metals' gravitational forces or weights are adjusted with temperature variation.