将基于变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的方法引入滚动轴承的故障诊断,提出了基于EMD(Empirical Mode Decomposi-tion,EMD)和VPMCD的滚动轴承故障诊断方法.采用EMD方法提取滚动轴承振动信号特...将基于变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的方法引入滚动轴承的故障诊断,提出了基于EMD(Empirical Mode Decomposi-tion,EMD)和VPMCD的滚动轴承故障诊断方法.采用EMD方法提取滚动轴承振动信号特征向量后,以VPMCD作为模式识别方法对滚动轴承的工作状态和故障类型进行分类.对正常状态、外圈故障、内圈故障3种不同类别下的滚动轴承振动信号进行了分析,结果表明了该方法在滚动轴承故障诊断中的有效性.同时,与人工神经网络(Artificial neural net-work,ANN)算法的对比分析表明,VMPCD算法分类性能的稳定性以及计算效率均要高于ANN算法.展开更多
变量预测模型的模式识别方法(Variable predictive model based class discriminate,VPMCD)是一种利用特征值相互内在关系进行模式识别的新方法。论文提出了基于局部均值分解LMD(Local mean decomposition,LMD)能量矩概念,并针对轴承故...变量预测模型的模式识别方法(Variable predictive model based class discriminate,VPMCD)是一种利用特征值相互内在关系进行模式识别的新方法。论文提出了基于局部均值分解LMD(Local mean decomposition,LMD)能量矩概念,并针对轴承故障振动信号特征值的相互内在联系,将LMD能量矩与变量预测模型模式识别相结合,提出了一种轴承故障智能诊断新方法。首先利用LMD方法将复杂非平稳的原始信号分解为若干PF(Product function,PF)分量;然后利用相关分析剔除LMD方法中的虚假PF分量,并提取真实PF分量能量矩组成特征向量来有效地表达故障信息;最后采用VPMCD方法进行轴承故障诊断。通过仿真信号验证了PF能量矩比PF能量更能反映非平稳信号本质特征。轴承故障诊断实验结果表明,论文提出的方法能有效地应用于小样本多分类轴承故障智能诊断。展开更多
文摘将基于变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的方法引入滚动轴承的故障诊断,提出了基于EMD(Empirical Mode Decomposi-tion,EMD)和VPMCD的滚动轴承故障诊断方法.采用EMD方法提取滚动轴承振动信号特征向量后,以VPMCD作为模式识别方法对滚动轴承的工作状态和故障类型进行分类.对正常状态、外圈故障、内圈故障3种不同类别下的滚动轴承振动信号进行了分析,结果表明了该方法在滚动轴承故障诊断中的有效性.同时,与人工神经网络(Artificial neural net-work,ANN)算法的对比分析表明,VMPCD算法分类性能的稳定性以及计算效率均要高于ANN算法.
文摘变量预测模型的模式识别方法(Variable predictive model based class discriminate,VPMCD)是一种利用特征值相互内在关系进行模式识别的新方法。论文提出了基于局部均值分解LMD(Local mean decomposition,LMD)能量矩概念,并针对轴承故障振动信号特征值的相互内在联系,将LMD能量矩与变量预测模型模式识别相结合,提出了一种轴承故障智能诊断新方法。首先利用LMD方法将复杂非平稳的原始信号分解为若干PF(Product function,PF)分量;然后利用相关分析剔除LMD方法中的虚假PF分量,并提取真实PF分量能量矩组成特征向量来有效地表达故障信息;最后采用VPMCD方法进行轴承故障诊断。通过仿真信号验证了PF能量矩比PF能量更能反映非平稳信号本质特征。轴承故障诊断实验结果表明,论文提出的方法能有效地应用于小样本多分类轴承故障智能诊断。