期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于改进信息最大化生成对抗网络的风光出力场景可控生成方法
1
作者 陈凡 陈刘明 +2 位作者 王曼 徐鸿琪 周小雨 《电网技术》 EI CSCD 北大核心 2024年第4期1477-1486,I0030,I0031-I0033,共14页
基于深度学习的场景生成方法能够自适应挖掘历史数据中高维非线性特征,在风光出力的不确定性建模中得到了广泛应用。然而,基于深度学习的场景生成方法多为黑盒模型,存在可解释性差、生成不可控等问题。为此,提出了一种基于改进信息最大... 基于深度学习的场景生成方法能够自适应挖掘历史数据中高维非线性特征,在风光出力的不确定性建模中得到了广泛应用。然而,基于深度学习的场景生成方法多为黑盒模型,存在可解释性差、生成不可控等问题。为此,提出了一种基于改进信息最大化生成对抗网络(information maximizing generative adversarial nets,Info GAN)的风光出力场景生成方法。该方法在目标函数中增加了基于互信息的正则化项,最大化控制编码与生成场景之间的互信息,无监督学习控制编码与生成场景统计特征的映射关系,并引入Gumbel-Softmax分布提高了生成场景的质量。结合风电场和光伏电站的真实数据进行了算例分析,算例结果表明,所提方法不仅能准确描述风光出力不确定性,而且具有可解释性,能够可控生成指定风光出力场景。 展开更多
关键词 场景生成 风光出力 可解释性 信息最大化生成对抗网络 Gumbel-Softmax分布 可控生成
原文传递
基于改进条件生成对抗网络的可控场景生成方法 被引量:1
2
作者 张帅 刘文霞 +3 位作者 万海洋 吕笑影 Nawaraj Kumar Mahato 鲁宇 《电力自动化设备》 EI CSCD 北大核心 2024年第6期9-17,共9页
可再生能源发电具有较强的随机性和波动性,为实现高效可靠的场景建模,提出一种基于改进条件生成对抗网络的可控场景生成方法。提出基于条件生成对抗网络的场景生成框架,结合Transformer的全局注意力机制以及常规卷积和深度可分离卷积的... 可再生能源发电具有较强的随机性和波动性,为实现高效可靠的场景建模,提出一种基于改进条件生成对抗网络的可控场景生成方法。提出基于条件生成对抗网络的场景生成框架,结合Transformer的全局注意力机制以及常规卷积和深度可分离卷积的局部泛化机制,设计适用于提取可再生能源发电不同维度特征的网络结构;利用条件生成对抗网络模型建立低维气象特征隐空间和高维可再生能源发电数据之间的映射关系,提出一种可控场景生成方法,并建立随机场景生成、场景约减、极端场景生成和连续日场景生成4种生成策略。基于实际光伏、风电数据和气象数据的仿真结果表明,所提模型与方法能够有效学习可再生能源发电的随机性、时序性、波动性及空间相关性,实现对不同策略下场景的可控生成。 展开更多
关键词 场景生成 条件生成对抗网络 特征提取 配电网 可控生成
下载PDF
基于扩散序列的多元可控文本生成
3
作者 李晨阳 张龙 +1 位作者 郑秋生 钱少华 《计算机应用》 CSCD 北大核心 2024年第8期2414-2420,共7页
随着大规模预训练语言模型的出现,文本生成技术已取得突破性进展。然而,在开放性文本生成领域,生成的内容缺乏拟人化的情感特征,使生成的文本难以让人产生共鸣和情感上的联系,可控文本生成在弥补当前文本生成技术不足方面具有重要意义... 随着大规模预训练语言模型的出现,文本生成技术已取得突破性进展。然而,在开放性文本生成领域,生成的内容缺乏拟人化的情感特征,使生成的文本难以让人产生共鸣和情感上的联系,可控文本生成在弥补当前文本生成技术不足方面具有重要意义。首先,在ChnSentiCorp数据集的基础上完成主题和情感属性的扩展,同时,为构建一个可生成流畅文本且情感丰富的多元可控文本生成模型,提出一种基于扩散序列的可控文本生成模型DiffuSeq-PT。该模型以扩散模型为基础架构,利用主题情感属性和文本数据在无分类器引导条件下对序列执行扩散过程,使用预训练模型ERNIE 3.0(Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation)的编码解码能力贴合扩散模型的加噪去噪过程,最终生成符合相关主题和多情感粒度的目标文本。与基准模型DiffuSeq相比,所提模型在2个公开的真实数据集(ChnSentiCorp和辩论数据集)上分别取得0.13和0.01的BERTScore值的提升,困惑度分别下降了14.318和9.46。 展开更多
关键词 扩散模型 序列扩散 预训练模型 提示 文本生成 可控生成 细粒度情感
下载PDF
可控文本生成技术研究综述
4
作者 王舰 孙宇清 《中文信息学报》 CSCD 北大核心 2024年第10期1-23,共23页
可控文本生成任务是指生成符合语法规则和语义需求,且满足给定约束的自然语言文本,具有重要应用价值。如何将约束嵌入到隐空间,从而有效控制离散的词汇生成过程是十分困难的,特别是在复杂应用场景中:不仅需要控制文本内容,还要求生成的... 可控文本生成任务是指生成符合语法规则和语义需求,且满足给定约束的自然语言文本,具有重要应用价值。如何将约束嵌入到隐空间,从而有效控制离散的词汇生成过程是十分困难的,特别是在复杂应用场景中:不仅需要控制文本内容,还要求生成的长文本形式多样、语言灵活以及逻辑合理等,这使得可控文本生成任务更具挑战性且难以评估。近年来,数据驱动的神经方法得到了广泛应用,特别是大规模预训练语言模型大幅度提升了生成文本质量。该文综述这些生成方法中的代表性技术架构和模型,讨论文本生成领域定性和定量评价指标,以及相关数据集;针对可控文本生成任务的文本多样性和句子间语义一致性等高层次需求,重点讨论相关技术前沿进展,分析其理论依据和技术优势;最后总结可控文本生成任务仍然面临的挑战和未来发展方向。 展开更多
关键词 可控文本生成 文本评估 文本多样性 长文本生成
下载PDF
基于情感可控文本生成的可解释推荐系统 被引量:1
5
作者 邬俊 刘林 +1 位作者 卢香葵 罗芳媛 《闽南师范大学学报(自然科学版)》 2023年第4期24-34,共11页
文本生成是实现可解释推荐系统的有效技术途径之一,有利于提升用户对平台的满意度和信任感.然而,现有方法忽略了用户历史评论与目标物品之间的情感一致性问题,使得所生成的解释文本差强人意.以电商推荐场景为例,提出一种基于情感可控文... 文本生成是实现可解释推荐系统的有效技术途径之一,有利于提升用户对平台的满意度和信任感.然而,现有方法忽略了用户历史评论与目标物品之间的情感一致性问题,使得所生成的解释文本差强人意.以电商推荐场景为例,提出一种基于情感可控文本生成的可解释推荐框架.该框架由评分回归模型与解释生成模型串联而成,前者输出的预估评分作为情感查询,用于辅助后者从历史评论中甄选出情感一致的评论语料,并产生情感可控的解释文本.通过建立多任务联合学习机制,实现了评分回归模型与解释生成模型之间的双向互通和协同优化.四个电商场景下的实验结果表明,所提出方法在评分预测精度和文本生成质量两类指标上均具有显著的性能优势. 展开更多
关键词 可解释推荐系统 情感可控文本生成 评分回归 预训练语言模型
下载PDF
结合主题模型与自监督学习的可控文本生成技术研究
6
作者 胡益 刘嘉勇 +1 位作者 代金鞘 贾鹏 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期124-132,共9页
基于大型预训练语言模型的有监督学习方法在可控文本生成任务上取得了优秀的成果,但这些研究都着重于控制生成文本的高级属性(比如情感与主题),而忽略了泛化性问题.现有的基于自监督学习的研究方法则通过句子级别的训练来使模型获得补... 基于大型预训练语言模型的有监督学习方法在可控文本生成任务上取得了优秀的成果,但这些研究都着重于控制生成文本的高级属性(比如情感与主题),而忽略了泛化性问题.现有的基于自监督学习的研究方法则通过句子级别的训练来使模型获得补全整句的能力,使模型做到单词和短语级别的控制生成,但生成与特定属性强相关句子的能力依旧待提升.所以本文提出了一种单词级别(细粒度)与句子(粗粒度)级别相结合的多粒度训练方式:单词级别的主题模型让模型学习主题层面的语义以获得主题到文本的生成能力,句子级别的自监督训练让模型学习整句的表征以获得补全句子的能力.通过主题模型与自监督学习的结合,使模型在单词与短语级别的可控生成阶段取得了更好的效果.实验表明,本文提出的模型在主题契合度以及常规文本生成指标方面优于现有的基线模型. 展开更多
关键词 可控文本生成 主题模型 预训练语言模型 自监督学习
下载PDF
基于可控多样性生成对抗网络的水环境遥感影像场景分类方法 被引量:1
7
作者 赵涛 彭峰 +3 位作者 周发超 高明亚 刘超 罗楠 《西北水电》 2023年第4期42-49,共8页
利用深度学习进行高分辨率遥感影像场景分类可以获得较高精度。深度模型通常需要大量的高质量的训练样本,然而,一些应用的样本数量本身就较少且缺乏多样性,同时受限于成本一些工作难以收集大量样本;空间信息单一且数量较少的样本集导致... 利用深度学习进行高分辨率遥感影像场景分类可以获得较高精度。深度模型通常需要大量的高质量的训练样本,然而,一些应用的样本数量本身就较少且缺乏多样性,同时受限于成本一些工作难以收集大量样本;空间信息单一且数量较少的样本集导致深度模型易于拟合于特异特征,从而降低分类能力。通过引入张量生成器T构建在空间结构与细节上具有多样性的二维描述张量,并根据二维描述张量生成遥感场景影像,提出一种基于可控多样性生成对抗网络的水环境遥感影像场景分类方法(CD-GAN),最后引入UC-Merced和AID两个遥感场景分类数据集进行5种不同方法的对比实验。结果表明:该遥感影像场景分类方法(CD-GAN)可提高原始样本集在空间特征和结构上的多样性,促进CNN在训练过程能够发现场景的关键空间特征,并将分类精度最高达到95.0±0.4。 展开更多
关键词 可控多样性生成对抗网络 遥感场景影像 场景分类 张量生成
下载PDF
基于计算机图形学的声呐图像生成方法 被引量:1
8
作者 胡宇翔 张武 李宝奇 《网络新媒体技术》 2023年第3期34-42,共9页
声呐图像由于采集困难,耗费的人力物力成本高,导致目前几乎没有公开的声呐图像数据集,其严重限制了声呐图像相关研究的进展。为了解决此问题,本文提出了一种基于计算机图形学的声呐图像生成方法,首先,通过场景建模、渲染获取海底地物场... 声呐图像由于采集困难,耗费的人力物力成本高,导致目前几乎没有公开的声呐图像数据集,其严重限制了声呐图像相关研究的进展。为了解决此问题,本文提出了一种基于计算机图形学的声呐图像生成方法,首先,通过场景建模、渲染获取海底地物场景的散射信息和深度信息,其次,通过回波生成计算模拟的原始回波数据,最后利用合成孔径成像算法对其进行处理得到生成的声呐图像。此外,考虑了海洋中常见的声压衰减和散斑噪声现象,并介绍了相关水声信息嵌入方法,可以进一步提高生成声呐图像的真实性。同时,可以通过控制拖体高度、目标高度、目标形状等参数来实现声呐图像的可控生成,能够有效缓解声呐图像数据集短缺的问题。 展开更多
关键词 声呐图像生成 计算机图形学 声压衰减 散斑噪声 可控生成
下载PDF
无监督的句法可控复述模型用于对抗样本生成 被引量:1
9
作者 杨二光 刘明童 +4 位作者 张玉洁 孟遥 胡长建 徐金安 陈钰枫 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期83-90,共8页
针对使用句法可控的复述生成模型生成对抗样本时模型性能受限于复述平行语料的领域和规模的问题,提出仅需要单语语料训练的无监督的句法可控复述生成模型,用以生成对抗样本。采用变分自编码方式学习模型,首先将句子和句法树分别映射为... 针对使用句法可控的复述生成模型生成对抗样本时模型性能受限于复述平行语料的领域和规模的问题,提出仅需要单语语料训练的无监督的句法可控复述生成模型,用以生成对抗样本。采用变分自编码方式学习模型,首先将句子和句法树分别映射为语义变量和句法变量,然后基于语义变量和句法变量重构原始句子。在重构过程中,模型可以在不使用任何平行语料的情况下学习生成句法变化的复述。在无监督复述生成和对抗样本生成任务中的实验结果表明,所提方法在无监督复述生成任务中取得最佳性能,在对抗样本生成任务中可以生成有效的对抗样本,用以改进神经自然语言处理(NLP)模型的鲁棒性和泛化能力。 展开更多
关键词 无监督学习 句法可控复述生成模型 对抗样本
下载PDF
基于细粒度可解释矩阵的摘要生成模型
10
作者 王浩男 高扬 +3 位作者 冯俊兰 胡珉 王惠欣 柏宇 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期23-30,共8页
针对摘要模型中总结并解释长篇上下文信息存在的困难,提出一种基于细粒度可解释矩阵,先抽取再生成的摘要模型(fine-grained interpretable matrix,FGIM),提升长文本对显著度、更新性和相关度的可解释抽取能力,引导系统自动生成摘要。该... 针对摘要模型中总结并解释长篇上下文信息存在的困难,提出一种基于细粒度可解释矩阵,先抽取再生成的摘要模型(fine-grained interpretable matrix,FGIM),提升长文本对显著度、更新性和相关度的可解释抽取能力,引导系统自动生成摘要。该模型通过一个句对判别(pair-wise)抽取器对文章内容进行压缩,捕获文章中心度高的句子,将抽取后的文本与生成器相结合,实现摘要生成。在生成端通过可解释的掩码矩阵,控制生成摘要的内容属性,在编码器端分别使用多层Transformer和预训练语言模型BERT来验证其适用性。在标准文本摘要数据集(CNN/DailyMail和NYT50)上的实验表明,所提模型的ROUGE指标和人工评估结果均优于当前最好的基准模型。实验中还构建两个测试数据集来验证摘要的更新度和相关度,结果表明所提模型在可控生成方面取得相应的提升。 展开更多
关键词 生成式摘要 可解释抽取 中心度 掩码矩阵 可控生成
下载PDF
AIGC视觉内容生成与溯源研究进展 被引量:1
11
作者 刘安安 苏育挺 +8 位作者 王岚君 李斌 钱振兴 张卫明 周琳娜 张新鹏 张勇东 黄继武 俞能海 《中国图象图形学报》 CSCD 北大核心 2024年第6期1535-1554,共20页
随着数字媒体与创意产业的快速发展,人工智能生成内容(artificial intelligence generated content, AIGC)技术以其在视觉内容生成中的创新应用而逐渐受到关注。本文旨在围绕AIGC视觉内容生成与溯源研究进展深入研讨。首先,针对图像生... 随着数字媒体与创意产业的快速发展,人工智能生成内容(artificial intelligence generated content, AIGC)技术以其在视觉内容生成中的创新应用而逐渐受到关注。本文旨在围绕AIGC视觉内容生成与溯源研究进展深入研讨。首先,针对图像生成技术进行探讨,从基于生成式对抗网络的传统方法出发,系统地分析了基于生成式对抗网络、自回归模型和扩散概率模型的最新进展。接着,深入探讨可控图像生成技术,突出了通过布局、线稿等附加信息以及基于视觉参考的方法来为创作者提供精确控制的技术现状。随着图像生成技术的革新和应用,生成图像的安全性问题逐渐浮现。而预先审核和过滤的技术手段已难以满足实际需求,故亟需实现生成内容的溯源来进行监管。因此,本文进而对生成图像溯源技术进行研讨,并聚焦水印技术在确保生成内容可靠性和安全性方面的应用。依据水印嵌入的流程节点,首先将现有的水印相关的生成图像溯源方法归为无水印嵌入的生成图像溯源、水印前置嵌入的生成图像溯源、水印后置嵌入的生成图像溯源以及联合生成的生成图像溯源并进行详细分析,然后介绍针对生成图像的水印攻击研究现状,最后对生成图像溯源技术进行总结和展望。鉴于视觉内容生成在质量和安全上的挑战,旨在为研究者提供一个视觉内容生成与溯源的系统研究视角,以促进数字媒体创作环境的安全与可信,并引导未来相关技术的发展方向。 展开更多
关键词 人工智能内容生成(AIGC) 视觉内容生成 可控图像生成 生成内容安全 生成图像溯源
原文传递
一种基于正交约束的隐空间多语义学习方法
12
作者 周琦量 卢育钦 《电脑知识与技术》 2022年第6期42-45,共4页
探索生成对抗网络隐空间的语义信息是当前生成对抗网络图像可控生成方向的研究热点。目前的研究在探索隐空间的语义时往往每次只学习某一个属性对应的语义方向,而这种方式没有考虑不同语义方向之间可能发生纠缠的问题,因此在控制生成图... 探索生成对抗网络隐空间的语义信息是当前生成对抗网络图像可控生成方向的研究热点。目前的研究在探索隐空间的语义时往往每次只学习某一个属性对应的语义方向,而这种方式没有考虑不同语义方向之间可能发生纠缠的问题,因此在控制生成图像某一属性变化时会影响到其他属性。为了解决此类问题,提出了一种基于正交约束的多语义学习方法,该方法在同时学习多个语义方向的训练过程中加入正交约束以减少不同语义方向之间的关联性,从而避免了不同语义方向间的纠缠问题。基于大规模生成对抗网络(BigGAN)模型在ImageNet数据集进行了水平平移、垂直平移和亮度等多语义方向的同步学习实验。实验结果表明,提出的方法能有效同时学习隐空间的多个语义方向,实现图像多个属性可控生成,同时能有效地保持不同语义方向之间的独立性。 展开更多
关键词 图像生成 生成对抗网络 隐空间 可控生成
下载PDF
深度对抗视觉生成综述 被引量:10
13
作者 谭明奎 许守恺 +1 位作者 张书海 陈奇 《中国图象图形学报》 CSCD 北大核心 2021年第12期2751-2766,共16页
深度视觉生成是计算机视觉领域的热门方向,旨在使计算机能够根据输入数据自动生成预期的视觉内容。深度视觉生成使用人工智能技术赋能相关产业,推动产业自动化、智能化改革与转型。生成对抗网络(generative adversarial networks,GANs)... 深度视觉生成是计算机视觉领域的热门方向,旨在使计算机能够根据输入数据自动生成预期的视觉内容。深度视觉生成使用人工智能技术赋能相关产业,推动产业自动化、智能化改革与转型。生成对抗网络(generative adversarial networks,GANs)是深度视觉生成的有效工具,近年来受到极大关注,成为快速发展的研究方向。GANs能够接收多种模态的输入数据,包括噪声、图像、文本和视频,以对抗博弈的模式进行图像生成和视频生成,已成功应用于多项视觉生成任务。利用GANs实现真实的、多样化和可控的视觉生成具有重要的研究意义。本文对近年来深度对抗视觉生成的相关工作进行综述。首先介绍深度视觉生成背景及典型生成模型,然后根据深度对抗视觉生成的主流任务概述相关算法,总结深度对抗视觉生成目前面临的痛点问题,在此基础上分析深度对抗视觉生成的未来发展趋势。 展开更多
关键词 深度学习 视觉生成 生成对抗网络(GANs) 图像生成 视频生成 3维深度图像生成 风格迁移 可控生成
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部