土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,...土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)>2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD>2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。展开更多
考虑到植被可见光-近红外的光谱吸收特征与光合有效辐射吸收率(fraction of absorbed photosynthetically active radiation,FAPAR)有很好的关联,综合"高光谱曲线特征吸收峰自动识别法"与"光谱吸收特征参量化法",...考虑到植被可见光-近红外的光谱吸收特征与光合有效辐射吸收率(fraction of absorbed photosynthetically active radiation,FAPAR)有很好的关联,综合"高光谱曲线特征吸收峰自动识别法"与"光谱吸收特征参量化法",提取对FAPAR敏感的高光谱吸收特征参数,借鉴可见光-近红外植被指数的数学形式,尝试用优化组合后的可见光-近红外光谱吸收特征参数替代光谱反射率,构建新型植被指数估算植被FAPAR,并利用2014年和2015年内蒙古自治区中部与东部地区天然草地典型群落冠层实测光谱数据进行FAPAR估算建模与验证。结果表明:新型植被指数"SAI-VI"不仅有效提高了单个光谱吸收特征参数在高、低覆盖区域估算FAPAR的精度,而且相比五种与FAPAR有较好相关性的具有不同作用类型的可见光-近红外植被指数,其与FAPAR值的相关性更高(存在最大相关系数=0.801),以其为变量的指数模型预测FAPAR精度更高且稳定性较好(建模与检验的判定系数均最高且超过0.75,标准误差与平均误差系数也相应最小)。研究表明:融入可见光-近红外高光谱吸收特征的新型植被指数"SAI-VI",强化了可见光波段与近红外波段光谱吸收特征的差别,相较单一光谱吸收特征参数,在降低土壤背景影响的同时增强了对FAPAR变化的敏感度。同时,"SAI-VI"有效综合了对植被FAPAR敏感的光谱吸收特征信息,相较原始光谱反射率,能表达植被光合有效辐射吸收特征的更多细节信息,可作为植被冠层FAPAR反演的新参数,一定程度上弥补当前植被指数法估算FAPAR的不足。展开更多
文摘土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)>2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD>2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。
文摘考虑到植被可见光-近红外的光谱吸收特征与光合有效辐射吸收率(fraction of absorbed photosynthetically active radiation,FAPAR)有很好的关联,综合"高光谱曲线特征吸收峰自动识别法"与"光谱吸收特征参量化法",提取对FAPAR敏感的高光谱吸收特征参数,借鉴可见光-近红外植被指数的数学形式,尝试用优化组合后的可见光-近红外光谱吸收特征参数替代光谱反射率,构建新型植被指数估算植被FAPAR,并利用2014年和2015年内蒙古自治区中部与东部地区天然草地典型群落冠层实测光谱数据进行FAPAR估算建模与验证。结果表明:新型植被指数"SAI-VI"不仅有效提高了单个光谱吸收特征参数在高、低覆盖区域估算FAPAR的精度,而且相比五种与FAPAR有较好相关性的具有不同作用类型的可见光-近红外植被指数,其与FAPAR值的相关性更高(存在最大相关系数=0.801),以其为变量的指数模型预测FAPAR精度更高且稳定性较好(建模与检验的判定系数均最高且超过0.75,标准误差与平均误差系数也相应最小)。研究表明:融入可见光-近红外高光谱吸收特征的新型植被指数"SAI-VI",强化了可见光波段与近红外波段光谱吸收特征的差别,相较单一光谱吸收特征参数,在降低土壤背景影响的同时增强了对FAPAR变化的敏感度。同时,"SAI-VI"有效综合了对植被FAPAR敏感的光谱吸收特征信息,相较原始光谱反射率,能表达植被光合有效辐射吸收特征的更多细节信息,可作为植被冠层FAPAR反演的新参数,一定程度上弥补当前植被指数法估算FAPAR的不足。
基金the National Natural Science Foundation of China (11602280, 617905246) and the scientific equipment developing project of the Chinese academy of sciences (28201631231100101)