Under green supply chain mode, how to Carry out the distribution of profits between subjects is an important problem. Through the comparison of the green supply chain benefit allocation of non-cooperative game and coo...Under green supply chain mode, how to Carry out the distribution of profits between subjects is an important problem. Through the comparison of the green supply chain benefit allocation of non-cooperative game and cooperative game the payoffmatrix, it is clearly that the necessity of interest distribution cooperative game. Put general manufacturing enterprises of green supply chain as the research object, using Shapley value method for theory analysis and example verification, vertifys that enterprise synergy gains more than their own separate management, and puts forward a feasible path of supply chain collaboration through the construction of the distribution of interests coordination model.展开更多
As a basic study to prevent accidents or concealment caused by violation of rules or regulations (which are regarded as uncooperative behavior), an attempt was made to clarify the condition necessary for promoting c...As a basic study to prevent accidents or concealment caused by violation of rules or regulations (which are regarded as uncooperative behavior), an attempt was made to clarify the condition necessary for promoting cooperation when the tit-for-tat strategy is adopted in the finite and repeated prisoner's dilemma situations. A mathematical model, in which three different strategies (tit-for-tat, all defection (individualism), and all cooperation (altruism)) exist, was constructed in order to demonstrate the condition that can promote cooperative behaviors. As a result of an agent-agent computer simulation, it was shown that the tit-for-tat strategy promoted more cooperation than other strategies when the number of agents adopting the tit-for-tat strategy was dominant in the population and the discount parameter was larger. Next, it was explored how the tit-for-tat strategy in the finite and repeated prisoner's dilemma promotes cooperation using a human-agent computer simulation. In other words, the condition under which cooperative behavior is encouraged was clarified. In the simulation experiment, the discount rate was controlled as an experimental variable. As well as the first experiment above, the dominant occupation of the tit-for-tat strategy was found to lead to the promoted cooperation. Concerning the effect of discount parameter on the cooperative behavior, the cooperation rate tended to increase with the increase of discount parameter only when the t-t-for-tat strategy is dominant. As a whole, the type of change of discount parameter did not affect the cooperation rate.展开更多
文摘Under green supply chain mode, how to Carry out the distribution of profits between subjects is an important problem. Through the comparison of the green supply chain benefit allocation of non-cooperative game and cooperative game the payoffmatrix, it is clearly that the necessity of interest distribution cooperative game. Put general manufacturing enterprises of green supply chain as the research object, using Shapley value method for theory analysis and example verification, vertifys that enterprise synergy gains more than their own separate management, and puts forward a feasible path of supply chain collaboration through the construction of the distribution of interests coordination model.
文摘As a basic study to prevent accidents or concealment caused by violation of rules or regulations (which are regarded as uncooperative behavior), an attempt was made to clarify the condition necessary for promoting cooperation when the tit-for-tat strategy is adopted in the finite and repeated prisoner's dilemma situations. A mathematical model, in which three different strategies (tit-for-tat, all defection (individualism), and all cooperation (altruism)) exist, was constructed in order to demonstrate the condition that can promote cooperative behaviors. As a result of an agent-agent computer simulation, it was shown that the tit-for-tat strategy promoted more cooperation than other strategies when the number of agents adopting the tit-for-tat strategy was dominant in the population and the discount parameter was larger. Next, it was explored how the tit-for-tat strategy in the finite and repeated prisoner's dilemma promotes cooperation using a human-agent computer simulation. In other words, the condition under which cooperative behavior is encouraged was clarified. In the simulation experiment, the discount rate was controlled as an experimental variable. As well as the first experiment above, the dominant occupation of the tit-for-tat strategy was found to lead to the promoted cooperation. Concerning the effect of discount parameter on the cooperative behavior, the cooperation rate tended to increase with the increase of discount parameter only when the t-t-for-tat strategy is dominant. As a whole, the type of change of discount parameter did not affect the cooperation rate.