Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often ...Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.展开更多
By making use of the theory of stability for dynamical systems, a general approach for synchronization of chaotic systems with parameters perturbation is presented, and a general method for determining control functio...By making use of the theory of stability for dynamical systems, a general approach for synchronization of chaotic systems with parameters perturbation is presented, and a general method for determining control function is introduced. The Rossler system is employed to verify the effectiveness of the method, and the theoretical results are confirmed by simulations.展开更多
This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not o...This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.展开更多
Simultaneous stabilization of linear systems is a fundamental issue in the system and control theory, and is of theoretical and practical significance. In this paper, the authors review the recent research progress an...Simultaneous stabilization of linear systems is a fundamental issue in the system and control theory, and is of theoretical and practical significance. In this paper, the authors review the recent research progress and the state-of-art results on simultaneous stabilization of single-input single-output linear time-invariant systems. Especially, the authors list the ever best results on the parameters involved in the well known "French Champagne Problem" and "Belgian Chocolate Problem" from the point of view of mathematical theoretical analysis and numerical calculation. And the authors observed that Boston claimed the lower bound of 5 can be enlarged to 0.976461 in 2012 is not accurate. The authors hope it will inspire further study on simultaneous stabilization of several linear systems.展开更多
In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria e...In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay- dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.展开更多
In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the ...In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.展开更多
In the paper, the anti-synchronization problem of the general delayed chaotic neural networks is investigated. For the master and slave systems, we obtain a control law to achieve the state anti-synchronization of two...In the paper, the anti-synchronization problem of the general delayed chaotic neural networks is investigated. For the master and slave systems, we obtain a control law to achieve the state anti-synchronization of two identical chaotic neural networks. By using the Halanay inequality lemma and Lyapunov stability method, we derive a delay indepen- dent sufficient exponential anti-synchronization condition relative to the parameters of the systems and controller gain matrix. The condition is easily verified in practice. Finally, the theoretical results are applied to two delayed chaotic neural networks, and numerical simulations are given to demonstrate the performance of the proposed scheme throughout some examples.展开更多
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
基金supported by National Natural Science Foundation of China under Nos. 10702023 and 10832006China Post-doctoral Special Science Foundation No. 200801020+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2007110020110supported in part by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences
文摘Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.
文摘By making use of the theory of stability for dynamical systems, a general approach for synchronization of chaotic systems with parameters perturbation is presented, and a general method for determining control function is introduced. The Rossler system is employed to verify the effectiveness of the method, and the theoretical results are confirmed by simulations.
基金This work was supported by National'Science Foundation for Distinguished Young Scholars under Grant No. 10825207, and in part by Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200430.
文摘This paper presents a method for directly analyzing the stability of complex-DDEs on the basis of stability switches. Two novel criteria are developed for the stability of a class of complex- DDEs. These results not only generalize some known results in literature but also greatly reduce the complexity of analysis and computation. To validate the effectiveness of the proposed criteria, the stabilization problem of the extended time delay auto-synchronization (ETDAS) control and n time delay auto-synchronization (NTDAS) control are then further investigated, respectively. The numerical simulations are consistent with the above theoretical analysis.
基金supported by the National Natural Science Foundation under Grant Nos.61370176 and 61571064
文摘Simultaneous stabilization of linear systems is a fundamental issue in the system and control theory, and is of theoretical and practical significance. In this paper, the authors review the recent research progress and the state-of-art results on simultaneous stabilization of single-input single-output linear time-invariant systems. Especially, the authors list the ever best results on the parameters involved in the well known "French Champagne Problem" and "Belgian Chocolate Problem" from the point of view of mathematical theoretical analysis and numerical calculation. And the authors observed that Boston claimed the lower bound of 5 can be enlarged to 0.976461 in 2012 is not accurate. The authors hope it will inspire further study on simultaneous stabilization of several linear systems.
基金Project supported by the National Natural Science Poundation of China(Nos.60574044,60774074)the Graduate Student Innovation Fonndation of Fudan University.
文摘In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay- dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.
基金Supported by Research Project of Hubei Provincial Department of Education under Grant No. Q20101609Foundation of Wuhan Textile University under Grant No. 105040
文摘In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.
文摘In the paper, the anti-synchronization problem of the general delayed chaotic neural networks is investigated. For the master and slave systems, we obtain a control law to achieve the state anti-synchronization of two identical chaotic neural networks. By using the Halanay inequality lemma and Lyapunov stability method, we derive a delay indepen- dent sufficient exponential anti-synchronization condition relative to the parameters of the systems and controller gain matrix. The condition is easily verified in practice. Finally, the theoretical results are applied to two delayed chaotic neural networks, and numerical simulations are given to demonstrate the performance of the proposed scheme throughout some examples.