能源紧缺和环境污染问题日益严重,因此电池的研究受到高度重视。目前,对于锂电池的检测技术发展并不成熟,特别是对于锂电池内阻的测量存在很大的不足。而锂电池的内阻又是荷电状态(SOC)和健康状态(SOH)估计的关键参数。针对提高锂电池...能源紧缺和环境污染问题日益严重,因此电池的研究受到高度重视。目前,对于锂电池的检测技术发展并不成熟,特别是对于锂电池内阻的测量存在很大的不足。而锂电池的内阻又是荷电状态(SOC)和健康状态(SOH)估计的关键参数。针对提高锂电池内阻测量精度的目的,采用四线法的原理设计了锂电池内阻测量的实际电路,通过在交流阻抗法的基础上根据同步积分法的原理对锂电池的内阻进行测量。并利用Simulink的DSP builder模块建模仿真得到同步积分法在加入20 d B高斯噪声的干扰下,具有很好的去噪声效果,通过取样积分法的幅度取值可知测量误差能够达到4%以内,甚至更小。展开更多
传统的微机电系统(MEMS)微陀螺仪解调算法抗噪声能力差、硬件资源消耗多,提出了一种同步积分解调算法(SID),用于MEMS陀螺闭环测控电路中,实现了驱动/检测信号解调输出。三阶同步积分器构成解调器。仿真分析表明:SID具有更快的响应时间,...传统的微机电系统(MEMS)微陀螺仪解调算法抗噪声能力差、硬件资源消耗多,提出了一种同步积分解调算法(SID),用于MEMS陀螺闭环测控电路中,实现了驱动/检测信号解调输出。三阶同步积分器构成解调器。仿真分析表明:SID具有更快的响应时间,更低的噪声水平,硬件资源消耗更少。基于SID算法,建立了MEMS陀螺数字闭环测控系统,驱动闭环中锁相环技术和自动增益控制技术实现陀螺恒幅恒频谐振,检测闭环中高阶带通ΣΔ环路滤波器提高了陀螺带宽和响应性能。仿真结果表明:陀螺驱动振幅为4.738μm,起振时间为0.12 s,检测带宽为200 Hz,信噪比达到了113.2 d B。展开更多
文摘能源紧缺和环境污染问题日益严重,因此电池的研究受到高度重视。目前,对于锂电池的检测技术发展并不成熟,特别是对于锂电池内阻的测量存在很大的不足。而锂电池的内阻又是荷电状态(SOC)和健康状态(SOH)估计的关键参数。针对提高锂电池内阻测量精度的目的,采用四线法的原理设计了锂电池内阻测量的实际电路,通过在交流阻抗法的基础上根据同步积分法的原理对锂电池的内阻进行测量。并利用Simulink的DSP builder模块建模仿真得到同步积分法在加入20 d B高斯噪声的干扰下,具有很好的去噪声效果,通过取样积分法的幅度取值可知测量误差能够达到4%以内,甚至更小。
文摘传统的微机电系统(MEMS)微陀螺仪解调算法抗噪声能力差、硬件资源消耗多,提出了一种同步积分解调算法(SID),用于MEMS陀螺闭环测控电路中,实现了驱动/检测信号解调输出。三阶同步积分器构成解调器。仿真分析表明:SID具有更快的响应时间,更低的噪声水平,硬件资源消耗更少。基于SID算法,建立了MEMS陀螺数字闭环测控系统,驱动闭环中锁相环技术和自动增益控制技术实现陀螺恒幅恒频谐振,检测闭环中高阶带通ΣΔ环路滤波器提高了陀螺带宽和响应性能。仿真结果表明:陀螺驱动振幅为4.738μm,起振时间为0.12 s,检测带宽为200 Hz,信噪比达到了113.2 d B。
基金The National Natural Science Foundation of China(No.31400317)the National Laboratory Open Program for Marine Science and Technology of Qingdao(No.QNLM2016ORP0312)+4 种基金the National High Technology Research and Development Program of China(No.2014AA06A509)the National Key Research and Development Programof China(No.2016YFC1400602)the Science and Technology Major SpecialProject of Anhui Province(No.15CZZ04125)Natural Science Foundation of Anhui Province(No.1708085QD87)STS Program of Chinese Academy of Science(No.KFJ-SW-STS-170)