The pressure pulsation induced by the pumped periodic pulsation fluid is the main factor of causing fluid resonance and stimulating pipelines vibrations and noise. In order to reduce the f...The pressure pulsation induced by the pumped periodic pulsation fluid is the main factor of causing fluid resonance and stimulating pipelines vibrations and noise. In order to reduce the faults caused by the vibrations of pipelines, two aspects have been researched: one is to develop high quality filters, weaken and restrain the crest of pulsation pressure; the other is to design structural parameters of the piping network and eliminate the fluid resonance. Both need calculating the pressure pulsations of different structural parameters and frequencies, and knowing the amplitude frequency. In this paper the stiffness matrix technique is used for treating the coupling of subsystems of pipelines and calculating the pressure distribution of the piping network and it is tested by simulation and experiments.展开更多
In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic...In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.展开更多
In the present paper,extremely unsteady shock wave buffet induced by strong shock wave/boundary-layer interactions (SWBLI) on the upper surface of an OAT15A supercritical airfoil at Mach number of 0.73 and angle of at...In the present paper,extremely unsteady shock wave buffet induced by strong shock wave/boundary-layer interactions (SWBLI) on the upper surface of an OAT15A supercritical airfoil at Mach number of 0.73 and angle of attack of 3.5 degrees is first numerically simulated by IDDES,one of the most advanced RANS/LES hybrid methods.The results imply that conventional URANS methods are unable to effectively predict the buffet phenomenon on the wing surface;IDDES,which involves more flow physics,predicted buffet phenomenon.Some complex flow phenomena are predicted and demonstrated,such as periodical oscillations of shock wave in the streamwise direction,strong shear layer detached from the shock wave due to SWBLI and plenty of small scale structures broken down by the shear layer instability and in the wake.The root mean square (RMS) of fluctuating pressure coefficients and streamwise range of shock wave oscillation reasonably agree with experimental data.Then,two vortex generators (VG) both with an inclination angle of 30 degrees to the main flow directions are mounted in front of the shock wave region on the upper surface to suppress shock wave buffet.The results show that shock wave buffet can be significantly suppressed by VGs,the RMS level of pressure in the buffet region is effectively reduced,and averaged shock wave position is obviously pushed downstream,resulting in increased total lift.展开更多
Mathematical model for the pulsatile blood flow through a porous medium under the influence of periodic body acceleration for gravity flow along an inclined tube by considering blood as a couple stress, incompressible...Mathematical model for the pulsatile blood flow through a porous medium under the influence of periodic body acceleration for gravity flow along an inclined tube by considering blood as a couple stress, incompressible and electrically conducting fluid in the presence of magnetic field has been investigated. Analytical expressions for axial velocity, flow rate, fluid acceleration and shear stress are obtained by applying the Laplace and finite Hankel's transforms. The velocity profiles for various values of Hartmann number, couple stress parameters and the angle of inclination are shown graphically. Also the effects of body acceleration, Womerseley parameters and permeability parameters have been discussed. The results obtained in the present mathematical model for different values of the parameters involved in the problem show that the flow of blood is influenced by the effect of magnetic field, the porous medium and the inclination angle. The present model is compared with the other existing models. Through this theoretical investigation, the applications of magnetic field have also been indicated in the field of biological, biomedical and engineering sciences.展开更多
文摘The pressure pulsation induced by the pumped periodic pulsation fluid is the main factor of causing fluid resonance and stimulating pipelines vibrations and noise. In order to reduce the faults caused by the vibrations of pipelines, two aspects have been researched: one is to develop high quality filters, weaken and restrain the crest of pulsation pressure; the other is to design structural parameters of the piping network and eliminate the fluid resonance. Both need calculating the pressure pulsations of different structural parameters and frequencies, and knowing the amplitude frequency. In this paper the stiffness matrix technique is used for treating the coupling of subsystems of pipelines and calculating the pressure distribution of the piping network and it is tested by simulation and experiments.
文摘In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.
基金supported by EU Project Advanced Turbulence Simulation for Aerodynamic Application Challenges (Grant No.ACP8-GA-2009-233710)the National Natural Science Foundation of China (Grant Nos.11072129 and 10932005)
文摘In the present paper,extremely unsteady shock wave buffet induced by strong shock wave/boundary-layer interactions (SWBLI) on the upper surface of an OAT15A supercritical airfoil at Mach number of 0.73 and angle of attack of 3.5 degrees is first numerically simulated by IDDES,one of the most advanced RANS/LES hybrid methods.The results imply that conventional URANS methods are unable to effectively predict the buffet phenomenon on the wing surface;IDDES,which involves more flow physics,predicted buffet phenomenon.Some complex flow phenomena are predicted and demonstrated,such as periodical oscillations of shock wave in the streamwise direction,strong shear layer detached from the shock wave due to SWBLI and plenty of small scale structures broken down by the shear layer instability and in the wake.The root mean square (RMS) of fluctuating pressure coefficients and streamwise range of shock wave oscillation reasonably agree with experimental data.Then,two vortex generators (VG) both with an inclination angle of 30 degrees to the main flow directions are mounted in front of the shock wave region on the upper surface to suppress shock wave buffet.The results show that shock wave buffet can be significantly suppressed by VGs,the RMS level of pressure in the buffet region is effectively reduced,and averaged shock wave position is obviously pushed downstream,resulting in increased total lift.
文摘Mathematical model for the pulsatile blood flow through a porous medium under the influence of periodic body acceleration for gravity flow along an inclined tube by considering blood as a couple stress, incompressible and electrically conducting fluid in the presence of magnetic field has been investigated. Analytical expressions for axial velocity, flow rate, fluid acceleration and shear stress are obtained by applying the Laplace and finite Hankel's transforms. The velocity profiles for various values of Hartmann number, couple stress parameters and the angle of inclination are shown graphically. Also the effects of body acceleration, Womerseley parameters and permeability parameters have been discussed. The results obtained in the present mathematical model for different values of the parameters involved in the problem show that the flow of blood is influenced by the effect of magnetic field, the porous medium and the inclination angle. The present model is compared with the other existing models. Through this theoretical investigation, the applications of magnetic field have also been indicated in the field of biological, biomedical and engineering sciences.