Medical models, or "phantoms," have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification a...Medical models, or "phantoms," have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification and validation, and medical devices development. Such new applications demand high-fidelity, patient-specific, tissue-mimicking medical phantoms that can not only closely emulate the geometric structures of human organs, but also possess the properties and functions of the organ structure. With the rapid advancement of three-dimensional (3D) printing and 3D bioprinting technologies, many researchers have explored the use of these additive manufacturing techniques to fabricate functional medical phantoms for various applications. This paper reviews the applications of these 3D printing and 3D bioprinting technologies for the fabrication of functional medical phantoms and bio-structures. This review specifically discusses the state of the art along with new developments and trends in 3D printed functional medical phantoms (i.e., tissue-mimicking medical phantoms, radiologically relevant medical phantoms, and physiological medical phantoms) and 3D bio-printed structures (i.e., hybrid scaffolding materials, convertible scaffolds, and integrated sensors) for regenerated tissues and organs.展开更多
Three antibiotics ampicillin, carbenicillin, and cefotaxime were evaluated for their effects on induction, growth, and differentiation of organogenic calli, as well as rooting of regenerated shoots of three loblolly p...Three antibiotics ampicillin, carbenicillin, and cefotaxime were evaluated for their effects on induction, growth, and differentiation of organogenic calli, as well as rooting of regenerated shoots of three loblolly pine (Pinus taeda L.) genotypes. Of the antibiotics administered, cefotaxime maximally increased the frequency of callus formation and growth rate of organogenic calli, carbenicillin maximally increased the frequency of shoot regeneration and the average number of adventitious shoots per piece of organogenic callus, ampicillin maximally decreased the rooting frequency of regenerated shoots and mean number of roots per regenerated shoot, in comparison with antibiotic-free media. Compared with the control, ampicillin minimally increased the frequency of callus formation, cefotaxime minimally increased the frequency of shoot regeneration, and carbenicillin mini-mally decreased the rooting frequency of regenerated shoots in three loblolly pine genotypes tested. All three antibiotics in-creased the frequencies of callus formation and shoot regeneration, and reduced the rooting frequency of regenerated shoots suggested that the establishment of an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integra-tion of foreign genes into loblolly pine need to select a suitable antibiotic. This investigation could be useful for optimizing genetic transformation of conifers.展开更多
Vigna unguiculata L. Walp is a recalcitrant plant in terms of in vitro cell, tissue and organ differentiation, which makes it difficult to apply tissue-culture dependant approaches for obtaining stable genetic transfo...Vigna unguiculata L. Walp is a recalcitrant plant in terms of in vitro cell, tissue and organ differentiation, which makes it difficult to apply tissue-culture dependant approaches for obtaining stable genetic transformation in cowpea. Despite this, sporadic efforts have been made to develop regeneration systems in cowpea during the past 40 years. This review presents the considerable progress on cowpea regeneration (organogenesis and embryogenesis) and especially focuses on the regeneration mode of organogenesis, including highlights of the effect of genotypes, explants, medium and plant hormones used in tissue culture. The existing problems and the future research directions were also discussed.展开更多
文摘Medical models, or "phantoms," have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification and validation, and medical devices development. Such new applications demand high-fidelity, patient-specific, tissue-mimicking medical phantoms that can not only closely emulate the geometric structures of human organs, but also possess the properties and functions of the organ structure. With the rapid advancement of three-dimensional (3D) printing and 3D bioprinting technologies, many researchers have explored the use of these additive manufacturing techniques to fabricate functional medical phantoms for various applications. This paper reviews the applications of these 3D printing and 3D bioprinting technologies for the fabrication of functional medical phantoms and bio-structures. This review specifically discusses the state of the art along with new developments and trends in 3D printed functional medical phantoms (i.e., tissue-mimicking medical phantoms, radiologically relevant medical phantoms, and physiological medical phantoms) and 3D bio-printed structures (i.e., hybrid scaffolding materials, convertible scaffolds, and integrated sensors) for regenerated tissues and organs.
文摘Three antibiotics ampicillin, carbenicillin, and cefotaxime were evaluated for their effects on induction, growth, and differentiation of organogenic calli, as well as rooting of regenerated shoots of three loblolly pine (Pinus taeda L.) genotypes. Of the antibiotics administered, cefotaxime maximally increased the frequency of callus formation and growth rate of organogenic calli, carbenicillin maximally increased the frequency of shoot regeneration and the average number of adventitious shoots per piece of organogenic callus, ampicillin maximally decreased the rooting frequency of regenerated shoots and mean number of roots per regenerated shoot, in comparison with antibiotic-free media. Compared with the control, ampicillin minimally increased the frequency of callus formation, cefotaxime minimally increased the frequency of shoot regeneration, and carbenicillin mini-mally decreased the rooting frequency of regenerated shoots in three loblolly pine genotypes tested. All three antibiotics in-creased the frequencies of callus formation and shoot regeneration, and reduced the rooting frequency of regenerated shoots suggested that the establishment of an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integra-tion of foreign genes into loblolly pine need to select a suitable antibiotic. This investigation could be useful for optimizing genetic transformation of conifers.
文摘Vigna unguiculata L. Walp is a recalcitrant plant in terms of in vitro cell, tissue and organ differentiation, which makes it difficult to apply tissue-culture dependant approaches for obtaining stable genetic transformation in cowpea. Despite this, sporadic efforts have been made to develop regeneration systems in cowpea during the past 40 years. This review presents the considerable progress on cowpea regeneration (organogenesis and embryogenesis) and especially focuses on the regeneration mode of organogenesis, including highlights of the effect of genotypes, explants, medium and plant hormones used in tissue culture. The existing problems and the future research directions were also discussed.