The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impeda...The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impedance techniques.The results revealed that no active-passive transition is presented in the cyclic voltammogram,and the anodic current density increases with the increase of solution temperature,TBAHS concentration,potential scan rate and water content.The apparent activation energy is about 43.389 kJ/mol and the dissolution process is diffusion-controlled.Potentiostatic measurements showed that the current density gradually decays to a steady value when the potential is low;however,when the potential is higher than a certain value,the current density initially declines to a minimum value and then increases gradually.The resistance of passive film decreases with increasing potential,and inductive loops are presented when the potential is higher than 2.0 V.展开更多
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was de...A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.展开更多
The effect of tetra ethyl ammonium bromide (TEAB) as an additive on the structural, morphological characteristics of the cobalt metal produced from aqueous sulphate solutions was investigated. The concentration of T...The effect of tetra ethyl ammonium bromide (TEAB) as an additive on the structural, morphological characteristics of the cobalt metal produced from aqueous sulphate solutions was investigated. The concentration of TEAB was varied in a range of 1-50 mg/L to evaluate its effect on current efficiency, energy consumption and quality of electrodeposited cobalt metal. Smooth and bright deposits of cobalt were obtained at low concentration of TEAB (10 mg/L) maintaining a current efficiency of 99.6%, with a low energy consumption of 2.38 kW'h/kg. X-ray diffraction studies reveal that (100) plane is the most preferred plane of crystal growth during cobalt electrodeposition. Scanning electron micrographs indicate that smooth and uniform deposit of cobalt is obtained at 10 mg/L beyond which the deposit quality deteriorates. Cyclic voltammetric studies indicate that the presence of TEAB in the electrolytic bath polarizes the cathode and decreases the cathodic current considerably. XPS results confirm the electrodeposition of high pure cobalt with no sign of chemical bonding with TEAB as evident from the FTIR spectra.展开更多
The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed...The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.展开更多
In this paper,we study the systematics of the 2_(1)^(+)states in the N=82 even-even isotones with proton numbers between 52 and 72.We calculate the level energies of the 0_(1)^(+),2_(1)^(+)states and the electric quad...In this paper,we study the systematics of the 2_(1)^(+)states in the N=82 even-even isotones with proton numbers between 52 and 72.We calculate the level energies of the 0_(1)^(+),2_(1)^(+)states and the electric quadrupole reduced transition probabilities B(E2;2_(1)^(+)→0_(1)^(+)),in the framework of the nuclear shell model with a monopole-and multipole-optimized realistic interaction.Our calculations yield good agreement with the experimental data and show a 2.5 MeV gap at Z=64 subshell closure in^(146)Gd.We predict that the B(E2;2_(1)^(+)→0_(1)^(+))value for^(146)Gd is close to those for^(142)Nd and^(144)Sm,and the values increase rapidly from^(148)Dy to^(152)Yb.展开更多
基金Project(2007AA03Z425)supported by the Hi-tech Research and Development Program of ChinaProject(50404011)supported by the National Natural Science Foundation of China
文摘The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impedance techniques.The results revealed that no active-passive transition is presented in the cyclic voltammogram,and the anodic current density increases with the increase of solution temperature,TBAHS concentration,potential scan rate and water content.The apparent activation energy is about 43.389 kJ/mol and the dissolution process is diffusion-controlled.Potentiostatic measurements showed that the current density gradually decays to a steady value when the potential is low;however,when the potential is higher than a certain value,the current density initially declines to a minimum value and then increases gradually.The resistance of passive film decreases with increasing potential,and inductive loops are presented when the potential is higher than 2.0 V.
文摘A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
文摘The effect of tetra ethyl ammonium bromide (TEAB) as an additive on the structural, morphological characteristics of the cobalt metal produced from aqueous sulphate solutions was investigated. The concentration of TEAB was varied in a range of 1-50 mg/L to evaluate its effect on current efficiency, energy consumption and quality of electrodeposited cobalt metal. Smooth and bright deposits of cobalt were obtained at low concentration of TEAB (10 mg/L) maintaining a current efficiency of 99.6%, with a low energy consumption of 2.38 kW'h/kg. X-ray diffraction studies reveal that (100) plane is the most preferred plane of crystal growth during cobalt electrodeposition. Scanning electron micrographs indicate that smooth and uniform deposit of cobalt is obtained at 10 mg/L beyond which the deposit quality deteriorates. Cyclic voltammetric studies indicate that the presence of TEAB in the electrolytic bath polarizes the cathode and decreases the cathodic current considerably. XPS results confirm the electrodeposition of high pure cobalt with no sign of chemical bonding with TEAB as evident from the FTIR spectra.
基金supported by the Open Research Fund of the State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System(No.CEMEE2019Z0104B)。
文摘The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.
基金National Key R&D Program of China(2018YFA0404403)National Natural Science Foundation of China(12075169,12035011,11605122)Fundamental Research Funds for the Central Universities(22120240207)。
文摘In this paper,we study the systematics of the 2_(1)^(+)states in the N=82 even-even isotones with proton numbers between 52 and 72.We calculate the level energies of the 0_(1)^(+),2_(1)^(+)states and the electric quadrupole reduced transition probabilities B(E2;2_(1)^(+)→0_(1)^(+)),in the framework of the nuclear shell model with a monopole-and multipole-optimized realistic interaction.Our calculations yield good agreement with the experimental data and show a 2.5 MeV gap at Z=64 subshell closure in^(146)Gd.We predict that the B(E2;2_(1)^(+)→0_(1)^(+))value for^(146)Gd is close to those for^(142)Nd and^(144)Sm,and the values increase rapidly from^(148)Dy to^(152)Yb.