期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积长短时记忆网络的国际平整度指标预测 被引量:1
1
作者 黄凯枫 刘庆华 《计算机与数字工程》 2024年第1期111-115,共5页
公路的快速发展带来了对路面各项指标快速检测和分析的需求,针对路面国际平整度指标的特点,提出使用卷积神经网络与长短期记忆神经网络的结合(CNN-LSTM)对国际平整度指标进行预测,卷积神经网络和长短期记忆神经网络分别学习激光雷达距... 公路的快速发展带来了对路面各项指标快速检测和分析的需求,针对路面国际平整度指标的特点,提出使用卷积神经网络与长短期记忆神经网络的结合(CNN-LSTM)对国际平整度指标进行预测,卷积神经网络和长短期记忆神经网络分别学习激光雷达距离数据的空间维度特征和时间维度特征,完成对平整度指标的预测。实验结果表明,相比较与LSTM网络,CNN-LSTM模型的MAPE值仅有2.3488,准确度和召回率分别达到90.61%和87.89%。通过真实值和预测值的对比可以发现CNN-LSTM更加适用于国际平整度指标的预测。 展开更多
关键词 长短时记忆神经网络 国际平整度预测 卷积神经网络 路面平整
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部