当前篡改图像识别算法在对组合篡改图像进行识别时,主要采用对像素或者块进行逐一匹配的方法来检测,导致识别精度不高、鲁棒性差等不足,为此提出改进的SURF耦合分级聚类的图像信息真伪决策算法。采用积分图像模型计算矩形区域像素强度...当前篡改图像识别算法在对组合篡改图像进行识别时,主要采用对像素或者块进行逐一匹配的方法来检测,导致识别精度不高、鲁棒性差等不足,为此提出改进的SURF耦合分级聚类的图像信息真伪决策算法。采用积分图像模型计算矩形区域像素强度的总和,通过计算Hessian矩阵提取特征点,构建圆形筛除器对SURF进行改进,对特征点数量进行整定,提高算法效率;引入最优节点优先方法 (best bin first method,BBF)对最近邻进行搜索,通过对特征点的特征描述符进行计算,完成特征点匹配;利用分级聚类方法,对特征点进行集群,创建层次树,完成图像的篡改检测。仿真结果表明,与当前图像篡改识别技术相比,所提算法具有更强的鲁棒性以及更高的检测精度。展开更多
文摘当前篡改图像识别算法在对组合篡改图像进行识别时,主要采用对像素或者块进行逐一匹配的方法来检测,导致识别精度不高、鲁棒性差等不足,为此提出改进的SURF耦合分级聚类的图像信息真伪决策算法。采用积分图像模型计算矩形区域像素强度的总和,通过计算Hessian矩阵提取特征点,构建圆形筛除器对SURF进行改进,对特征点数量进行整定,提高算法效率;引入最优节点优先方法 (best bin first method,BBF)对最近邻进行搜索,通过对特征点的特征描述符进行计算,完成特征点匹配;利用分级聚类方法,对特征点进行集群,创建层次树,完成图像的篡改检测。仿真结果表明,与当前图像篡改识别技术相比,所提算法具有更强的鲁棒性以及更高的检测精度。