Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimen...Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimental soilborne microorganisms. The growth of biological control agents Trichoderma atroviride strain P1, Trichoderma harzianum strain A6 and strain T22, plant pathogens Botrytis cinerea, Alternaria alternata, Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum was investigated in the presence of REEs. An in vitro assays was used to monitor the effect of different concentration levels of either a mix of REEs (La, Ce, Pr, Nd) nitrates or lanthanum alone in comparison to treatments conducted with potassium nitrate and water. Although all fungi were affected when the REEs mix or lanthanum were present at concentrations higher than 100 mM, the growth inhibition depended mainly upon the combination of compounds, the dose and the fungal species or strains tested. Trichoderma strains and B. cinerea were more sensitive than A. alternata, F. solani, R. solani or at higher concentrations. Differing growth responses of some fungi to treatments with REEs mix vs. lanthanum alone indicated that in given situations the effect of the REEs compounds may be caused by elements other than lanthanum or by element mixtures. Further investigations are in progress to determine the effect of REEs on important interactions in the soil community between beneficial fungi, pathogenic fungi and/or the plant. REEs are naturally present in the environment and in biological systems but accumulation in soil can take place following successive applications. Therefore, it would be useful to achieve a better understanding of the effect of REEs accumulation on the activity of rhizosphere microorganisms given the widespread use in some regions of rare earths as fertilizers and their presence as fertilizer contaminants.展开更多
Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhP...Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin btmdling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence important for defense against V. dahliae infection. showing that actin cytoskeleton reorganization involving GhPFN2 is展开更多
文摘Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimental soilborne microorganisms. The growth of biological control agents Trichoderma atroviride strain P1, Trichoderma harzianum strain A6 and strain T22, plant pathogens Botrytis cinerea, Alternaria alternata, Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum was investigated in the presence of REEs. An in vitro assays was used to monitor the effect of different concentration levels of either a mix of REEs (La, Ce, Pr, Nd) nitrates or lanthanum alone in comparison to treatments conducted with potassium nitrate and water. Although all fungi were affected when the REEs mix or lanthanum were present at concentrations higher than 100 mM, the growth inhibition depended mainly upon the combination of compounds, the dose and the fungal species or strains tested. Trichoderma strains and B. cinerea were more sensitive than A. alternata, F. solani, R. solani or at higher concentrations. Differing growth responses of some fungi to treatments with REEs mix vs. lanthanum alone indicated that in given situations the effect of the REEs compounds may be caused by elements other than lanthanum or by element mixtures. Further investigations are in progress to determine the effect of REEs on important interactions in the soil community between beneficial fungi, pathogenic fungi and/or the plant. REEs are naturally present in the environment and in biological systems but accumulation in soil can take place following successive applications. Therefore, it would be useful to achieve a better understanding of the effect of REEs accumulation on the activity of rhizosphere microorganisms given the widespread use in some regions of rare earths as fertilizers and their presence as fertilizer contaminants.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11040600)the National Natural Science Foundation of China(31671278)the State Key Laboratory of Plant Genomics of China(2015B0129-02)
文摘Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin btmdling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence important for defense against V. dahliae infection. showing that actin cytoskeleton reorganization involving GhPFN2 is