Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hyg...Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.展开更多
[Objective] This study was conducted to investigate the effect of soil moisture on the growth and water utilization of Chinese kale. [Method] The law of water absorption and utilization of Chinese kale was researched ...[Objective] This study was conducted to investigate the effect of soil moisture on the growth and water utilization of Chinese kale. [Method] The law of water absorption and utilization of Chinese kale was researched under the same irri- gation frequency and different irrigation maximums. [Result] Soil water deficit re- duced water contents in plants in seedling stage and in plants and various organs in maturation stage; water consumption of individual plant was the lowest in 55% treatment of soil A and 45% treatment of soil B, which showed the values of 2.244 and 2.235 L/plant, respectively, and saved water by 23.91% and 21.14% compared with CK; water use efficiencies of soil A with a water content of 55% and soil B with a water content of 35% were the highest, i.e., 6.043 and 5.958 g/L, which were higher than that of CK by 20.09% and 41.72%, respectively; and regulated deficit irrigation also improved irrigation water productivity, and the two kinds of soil both showed in 75% treatments the highest irrigation water productivities, i.e., 40.44 and 40.49 g/L, which were higher than that of CK by 5.64% and 13.39%, respec- tively. [Conclusion[ Controlling irrigation maximum could save water consumed by Chinese kale, improve water use efficiency and improve yield and quality.展开更多
The research advance on the influencing factors of crop water use effi-ciency (WUE) was reviewed in this paper. Based on the discussion on the conno-tation of crop WUE, the influencing factors of crop WUE, such as c...The research advance on the influencing factors of crop water use effi-ciency (WUE) was reviewed in this paper. Based on the discussion on the conno-tation of crop WUE, the influencing factors of crop WUE, such as crop, environ-ment, chemicals, cultivation measures, cropping systems, etc, were elaborated. A-mong them, the species and varieties of crop, soil and chemicals were discussed in detail.展开更多
A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic ...A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic brown soil during 2001 and 2002. A completely randomexperimental design with three replications was employed, having four soil management practices astreatments, namely: an undisturbed plow layer (CK), a thin plastic film (TN), a thick plastic film(TI) and subsoil compacting (CP). Results indicated no significant differences among all treatmentsfor rice biomass and grain yields. Also, water consumption was about the same for treatments TN andCK, however the treatments TI and CP were much lower with more than 45% and 40% of the irrigationwater in the treatments TI and CP, respectively, saved each year compared to CK. Therefore, wateruse efficiency was higher in the treatments TI and CP. These results will provide a scientific basisfor the water-saving rice cultivation.展开更多
A field experiment was conducted in a well-puddled paddy field developed on the Tama River alluvial soil in the Farm of Tokyo University of Agriculture and Technology, Japan, to study the effect of intermittent irriga...A field experiment was conducted in a well-puddled paddy field developed on the Tama River alluvial soil in the Farm of Tokyo University of Agriculture and Technology, Japan, to study the effect of intermittent irrigation on water use efficiency of paddy rice. Four treatments were arranged with 2 replicates: continuous flooding irrigation treatments (CFI), and three intermittent irrigation treatments Ⅱ-0, Ⅱ-1 and Ⅱ-2, in which plants were re-irrigated when the soil water potential fell below 0, -10, and -20 kPa, respectively, at soil depth of about 5 cm. Water consumption was lower in treatment Ⅱ-0 than in treatment CFI because the percolation rate was reduced by the reduction in the hydraulic head of ponded water. Intermittent irrigation led to soil repeated shrinking and swelling in Ⅱ-1 and Ⅱ-2 plots and, therefore, soil cracks developed rapidly. Since they became the major routes of water percolation, the soil cracks increased water consumption in treatments Ⅱ-1 and Ⅱ-2. There were no significant differences in dry matter production and grain yields between treatment Ⅱ-0 and treatment CFI, but the dry matter production and grain yields in treatments Ⅱ-0 and CFI were significantly higher than those in treatments Ⅱ-1 and Ⅱ-2. Therefore, the water use efficiency in the treatments was in the order of Ⅱ-0 > CFI > Ⅱ- 2 > Ⅱ- 1.展开更多
The contents, affecting factors, seasonal changes and availability of fixed ammonium in major types ofpaddy soils derived from different parent materials in Hunan Province, China, were studied using the Silva-Bremner ...The contents, affecting factors, seasonal changes and availability of fixed ammonium in major types ofpaddy soils derived from different parent materials in Hunan Province, China, were studied using the Silva-Bremner method by laboratory and pot experiments. Results showed that the content of fixed ammoniumin the plough horizons ranged from 88.3 mg kg-1 to 388.1 mg kg-1, with 273.2 ± 77.7 mg kg-1 on average,accounting for 11.2% of total soil N on average. Content of fixed ammonium decreased in the order of newlylacustrine clayey paddy soil > alluvial sandy paddy soil > purple clayey paddy soil > newly alluvial sandypaddy soil > yellow clayey paddy soil > reddish-yellow clayey paddy soil > granitic sandy paddy soil. Therewere four distribution patterns of fixed ammonium in the profiles to 1-m depth, i.e., increase with the depth,decrease with increasing depth, no distinct change with the depth, and abrupt increase or decrease in somehorizon. Percentage of fixed ammonium in total N increased with the depth in most of the soils. Fixationof NH4+ by soil was higher at 30 ℃ than at 20 ℃ and 40 ℃, and continuous submergence benefited thefixation of NH4+ in newly alluvial sandy paddy soil, purple clayey paddy soil and alluvial sandy paddy soil,while alternating wetting and drying contributed to the fixation of NH4+ in yellow clayey paddy soil mostly.Fixed ammonium content in the test paddy soils was significantly correlated with < 0.01 mm clay content(P < 0.05), but not with < 0.001 mm clay content, total N, organic N and organic matter. Fixed ammoniumcontent varied with rice growth stages. Application of N fertilizer promoted fixation of NH4+ by soil, and Nuptake by rice plant promoted release of fixed ammonium from the soil. Recently fixed ammonium in paddysoil after N fertilizer application was nearly 100% available to rice plant, while native fixed ammonium wasonly partly available, varying with the soil type and rice type.展开更多
Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantatio...Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using ^15N- labelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg^-1 dried soil) of fertilisers on the growth, ^15N recovery and carbon isotope composition (δ^13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland, Australia. The ^15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots, containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage, and then analysed for ^15N, total N, δ^13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined ^15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of ^15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg^-1 soil gradually increased seedling foliage δ^13C over the 12-month period, indicating an increase in seedling water use efficiency.展开更多
文摘Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.
基金Supported by Science and Technology Planning Project of Guangdong Province:Application Research and Demonstration of Automatic Irrigation based on Testing Soil Moisture in Vegetable Production(2015A020209068)Special Fund for Agro-scientific Research in the Public Interest:Research on High-efficiency Vegetable Cultivation and Typical Vegetable Field Non-point Source Pollution Control Technique in South China,Comprehensive Technical Solution for Non-point Source Pollution by Chemical Fertilizer in Farmland(201502103)~~
文摘[Objective] This study was conducted to investigate the effect of soil moisture on the growth and water utilization of Chinese kale. [Method] The law of water absorption and utilization of Chinese kale was researched under the same irri- gation frequency and different irrigation maximums. [Result] Soil water deficit re- duced water contents in plants in seedling stage and in plants and various organs in maturation stage; water consumption of individual plant was the lowest in 55% treatment of soil A and 45% treatment of soil B, which showed the values of 2.244 and 2.235 L/plant, respectively, and saved water by 23.91% and 21.14% compared with CK; water use efficiencies of soil A with a water content of 55% and soil B with a water content of 35% were the highest, i.e., 6.043 and 5.958 g/L, which were higher than that of CK by 20.09% and 41.72%, respectively; and regulated deficit irrigation also improved irrigation water productivity, and the two kinds of soil both showed in 75% treatments the highest irrigation water productivities, i.e., 40.44 and 40.49 g/L, which were higher than that of CK by 5.64% and 13.39%, respec- tively. [Conclusion[ Controlling irrigation maximum could save water consumed by Chinese kale, improve water use efficiency and improve yield and quality.
基金Supported by National Science-Technology Support Plan Project(2012BAD40B02)~~
文摘The research advance on the influencing factors of crop water use effi-ciency (WUE) was reviewed in this paper. Based on the discussion on the conno-tation of crop WUE, the influencing factors of crop WUE, such as crop, environ-ment, chemicals, cultivation measures, cropping systems, etc, were elaborated. A-mong them, the species and varieties of crop, soil and chemicals were discussed in detail.
基金Project supported by the Foundation of Shenyang Experimental Station of Ecology, Chinese Academy of Sciences (No. SYZ0203).
文摘A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic brown soil during 2001 and 2002. A completely randomexperimental design with three replications was employed, having four soil management practices astreatments, namely: an undisturbed plow layer (CK), a thin plastic film (TN), a thick plastic film(TI) and subsoil compacting (CP). Results indicated no significant differences among all treatmentsfor rice biomass and grain yields. Also, water consumption was about the same for treatments TN andCK, however the treatments TI and CP were much lower with more than 45% and 40% of the irrigationwater in the treatments TI and CP, respectively, saved each year compared to CK. Therefore, wateruse efficiency was higher in the treatments TI and CP. These results will provide a scientific basisfor the water-saving rice cultivation.
基金Project (No. 49971043) supported partly by the National Natural Science Foundation of China.
文摘A field experiment was conducted in a well-puddled paddy field developed on the Tama River alluvial soil in the Farm of Tokyo University of Agriculture and Technology, Japan, to study the effect of intermittent irrigation on water use efficiency of paddy rice. Four treatments were arranged with 2 replicates: continuous flooding irrigation treatments (CFI), and three intermittent irrigation treatments Ⅱ-0, Ⅱ-1 and Ⅱ-2, in which plants were re-irrigated when the soil water potential fell below 0, -10, and -20 kPa, respectively, at soil depth of about 5 cm. Water consumption was lower in treatment Ⅱ-0 than in treatment CFI because the percolation rate was reduced by the reduction in the hydraulic head of ponded water. Intermittent irrigation led to soil repeated shrinking and swelling in Ⅱ-1 and Ⅱ-2 plots and, therefore, soil cracks developed rapidly. Since they became the major routes of water percolation, the soil cracks increased water consumption in treatments Ⅱ-1 and Ⅱ-2. There were no significant differences in dry matter production and grain yields between treatment Ⅱ-0 and treatment CFI, but the dry matter production and grain yields in treatments Ⅱ-0 and CFI were significantly higher than those in treatments Ⅱ-1 and Ⅱ-2. Therefore, the water use efficiency in the treatments was in the order of Ⅱ-0 > CFI > Ⅱ- 2 > Ⅱ- 1.
基金Froject supported by the Scientific Research Foundation of Hunan Province(No.20012-2000C168).
文摘The contents, affecting factors, seasonal changes and availability of fixed ammonium in major types ofpaddy soils derived from different parent materials in Hunan Province, China, were studied using the Silva-Bremner method by laboratory and pot experiments. Results showed that the content of fixed ammoniumin the plough horizons ranged from 88.3 mg kg-1 to 388.1 mg kg-1, with 273.2 ± 77.7 mg kg-1 on average,accounting for 11.2% of total soil N on average. Content of fixed ammonium decreased in the order of newlylacustrine clayey paddy soil > alluvial sandy paddy soil > purple clayey paddy soil > newly alluvial sandypaddy soil > yellow clayey paddy soil > reddish-yellow clayey paddy soil > granitic sandy paddy soil. Therewere four distribution patterns of fixed ammonium in the profiles to 1-m depth, i.e., increase with the depth,decrease with increasing depth, no distinct change with the depth, and abrupt increase or decrease in somehorizon. Percentage of fixed ammonium in total N increased with the depth in most of the soils. Fixationof NH4+ by soil was higher at 30 ℃ than at 20 ℃ and 40 ℃, and continuous submergence benefited thefixation of NH4+ in newly alluvial sandy paddy soil, purple clayey paddy soil and alluvial sandy paddy soil,while alternating wetting and drying contributed to the fixation of NH4+ in yellow clayey paddy soil mostly.Fixed ammonium content in the test paddy soils was significantly correlated with < 0.01 mm clay content(P < 0.05), but not with < 0.001 mm clay content, total N, organic N and organic matter. Fixed ammoniumcontent varied with rice growth stages. Application of N fertilizer promoted fixation of NH4+ by soil, and Nuptake by rice plant promoted release of fixed ammonium from the soil. Recently fixed ammonium in paddysoil after N fertilizer application was nearly 100% available to rice plant, while native fixed ammonium wasonly partly available, varying with the soil type and rice type.
基金Project supported by a scholarship grant from the Cooperative Research Centre for Sustainable Production Forestry,Australia
文摘Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using ^15N- labelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg^-1 dried soil) of fertilisers on the growth, ^15N recovery and carbon isotope composition (δ^13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland, Australia. The ^15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots, containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage, and then analysed for ^15N, total N, δ^13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined ^15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of ^15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg^-1 soil gradually increased seedling foliage δ^13C over the 12-month period, indicating an increase in seedling water use efficiency.