The distribution of various fractions of Zn, Fe, Cu and Mn in 15 types of sods in China and its rela-tionship with plant availability were studied. Wactions of various elements were found to have some similarcharacter...The distribution of various fractions of Zn, Fe, Cu and Mn in 15 types of sods in China and its rela-tionship with plant availability were studied. Wactions of various elements were found to have some similarcharacteristic distribution regularities in wirious types of soils, but various soil types derered to varyingdegrees in the distribution of each fraction. Soil physico-chemical properties, such as pH, CEC and thecontents of OM, CaCO_3, free Fe, free Mn and P_2O_5, were signdicantly correlated with the distribution ofelemental fractions, and a significazit correlation also existed between the distribution and plant amilabilityof elemental fractions. Varfous fractions of each element were divided into two groups bed on their plantavailability. The correlation between the distribution of combination fractions aiid plaxit availability indi-cated a significantly or an extremely significantly positive correlation for Group I but a significantly or anextremely significantly negative correlation for Group II. Therefore, the fractions in Group I were primarypools of available nutrients, while those in Group II could hardly provide available nutrients for plants. Descreasing the transformation of corresponding elements into fractions of Group 11 and increasing the storagecapacity of various fractions of Group I were an important direction for regulation and controiling of soilnutrients. However, some Particular soils with too high contents of Zn, Fe, Cu and Mn should be regulatedand controlled adversely展开更多
Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. T...Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. The results showed that the concentrations of soluble Zn in surface runoff were significantly negatively correlated with the contents of <0.002 mm particles and CEC of the soils, indicating that Zn was mostly adsorbed by clays in the soils. The contents of Cu and Hg in surface runoff were positively related to their contents in the soils. The amounts of Cu, Zn, Pb and Hg removed by surface runoff were influenced by the amounts of soil and water losses and their contents in the soils, and were closely related to the contents of soil particles 1-0.02 mm in size.展开更多
The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A la...The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A laboratory experiment was performed to study the effects of combined pollution of Cu, Ph, Zn and Cd on soil K status as indicated by chemical fractions, adsorption-desorption and quantity/intensity (Q/I) relationship of K in a Typic Udic Ferrisol (generally called red soil), by employing uniform design and single factor design. Compared to the control, content of exchangeable K was decreased, but that of soluble K increased in the samples contaminated with heavy metals. Due to heavy metal pollution, potassium adsorption was reduced by 5% to 22%, whereas the desorption percentage of adsorbed K increased by 2% to 32%. The Q/I curves shifted downward, potassium buffering capacity (PBCK) decreased, and equilibrium activity ratio values (ARoK) increased with increasing heavy metal pollution. These influences followed the sequences of Ph>Cu>Zn and combined pollution>single one. Displacement of K from canon exchange sites and decrease in soil CEC due to heavy metals should be responsible for the changes of soil K behaviours. The findings suggest that heavy metal pollution of soil might aggravate the degradation of soil K fertility by decreasing K adsorption and buffering capacity and increasing desorption.展开更多
Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a...Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a centrifugation and filtration technique.Meal speciation in the soil solution was determined by a cationexchange resin method. Acetic acid and EDTA extracting solutions wereused for extraction of metals in soil solid surfaces. Metaldistribution in different fractions of soil solid phase wasdetermined using a three-step sequential extraction scheme.展开更多
A modified glass bead compartment cultivation system was used tocompare some chemical and biolog- ical properties of the twoarbuscular mycorrhizal (AM) fungi Glmomus mosseae and Glomusversiforme using maize (Zea mays)...A modified glass bead compartment cultivation system was used tocompare some chemical and biolog- ical properties of the twoarbuscular mycorrhizal (AM) fungi Glmomus mosseae and Glomusversiforme using maize (Zea mays) as the host plant with four addedlevels of available phosphorus (P). The proportion of host plant rootlength infected was determined t harvest. Shoot and root yields andnutrient concentra- tions were determined, together with the nutrientconcentrations in the AM fungal external mycelium. The morphology ofvarious mycorrhizal structures of the two AM fungi was also comparedby microscopic obser- vation.展开更多
Bioavailability of heavy metals in soil organic matter depends on itscomponents. Characterization of heavy metal distributions in different fractions of soil organicmatter is needed for better understanding of the fat...Bioavailability of heavy metals in soil organic matter depends on itscomponents. Characterization of heavy metal distributions in different fractions of soil organicmatter is needed for better understanding of the fate of heavy metals. This study investigated theaccumulation and partitioning of copper and zinc among different size particulate organic matter(POM) fractions in polluted soils from a former iron ore processing site in western Shaoxing County,Zhejiang Province. Physical fractionations were carried out to separate soil primary particlesaccording to their size and density. Copper and Zn had a heterogeneous distribution among soilparticle fractions. Copper and Zn were significantly (p < 0.05) enriched in the POM fractions. >0.05 mm POM and < 0.05 mm fine soil fractions were mainly responsible for Cu and Zn retention insoils. The POM fraction contained up to 1 322 mg Cu kg^(-1) and 1115 mg Zn kg^(-1) and the fine soilfraction contained up to 422 mg Cu kg^(-1) and 537 mg Zn kg^(-1). The total POM fraction wasresponsible for 15.8%-41.2% and 12.2%-31.7% of the total amount of Cu and Zn, respectively, in thepolluted soils. The percentages of Cu and Zn associated with organic matter in < 0.05 mm fine soilfractions for the polluted soils ranged from 14.1% to 24.5%, and 5.4% to 15.8%, respectively.Accumulation of soil organic matter could increase enrichment of Cu (or Zn) in the POM fractions.Also, Cu provided a greater enrichment in the POM fractions than Zn.展开更多
Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficienc...Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.展开更多
Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of s...Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of simulated acidification of the soils. The results showed that soil acidification could change chemical forms of Cu and Zn in the soils, impel the transformation of Cu and Zn from carbonate associated fractions to exchangeable, organic matter and oxides associated fractions, and thus increase the release potential of Cu and Zn in the soils. The effect of the acidification on Zn leaching was more significant than that of Cu. Water solubility of Cu and Zn in the soils was increased with decreasing pH, and the solubility of Cu and Zn was increased exponentially at pH 3.8-4.5, and 6.2-6.5, respectively.展开更多
Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients, B, Mo, Cu, Zn, Fe, and Mn, in soils derived from various parent materials in the...Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients, B, Mo, Cu, Zn, Fe, and Mn, in soils derived from various parent materials in the forest area of Taihu Lake region in southeast China. The results showed that the dry weight of individual current-year needle of Chinese fir (Cunninghamia lanceolata) grown on the soi1 derived from granite parent rock was increased by 8% and 13% in comparison with that grown on the soils derived from sandstone and ash-tuff parent rock, respectively. And such dry weight of loblolly pine (Pinus taeda) grown on the soil derived from sandstone parent rock was increased by 21% in comparison with that on the soil derived from ash-tuff parent rock. One of the reasons for those results was that micronutrients content in the soil derived from ash-tuff parent rock were not sufficient to meet the requirement of the growth of Chinese fir and loblolly pine, i.e., micronutrients in soil were deficient and/or induced deficient. The amounts of Cu, Zn, Fe, and Mn uptake by Chinese fir and loblolly pine were in agreement with the contents of available micronutrients in soil respectively, except for B and Mo. Meanwhile, there might exist an "antagonism" between the uptake of B versus Mo by trees, although more studies are needed to confirm it. Regression analysis indicated that amount of a soil available micronutrient was correlated to the type of parent material and its total amount in the forest floor, except for B. The F test identified that the correlation of each equation reached the significant level to different extents, respectively. The t test confirmed that amount of available forms was mainly depended on the type of parent material for Mo, Cu, Zn and Mn but on the forest floor for Fe. There was a feedback effect of forest stand on the amount of soil available micronutrients. The ability of accumulating available micronutrients in soil was better by the sawtooth oak (Quercus acutissima) stand than by the Chinese fir stand (except for B). The ability of accumulating available Zn, Fe, Mn and Mo in soil was better by the Chinese fir stand than by the loblolly pine stand, while as for available B and Cu, by the latter was better than by the former. When discussing the effect of forest stand on the amount of soil available micronutrients, not only the amount of micronutrient in the forest floor and the parent materials but also the amount of micronutrient taken up by current-year needles have to be considered.展开更多
The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs...The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China. In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS. The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts, respectively. The results from the field experiment showed that the contents of total Zn, Cu, and Cd in the soils increased linearly with SS application rates. With increasing SS application rates, the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau, while there was no significant change of Cd content in the maize grains. The bioconcentration factors of the metals in the grains of wheat and maize were found to he in the order of Zn 〉 Cu 〉 Cd, but for the straw the order was Cd 〉 Cu 〉 Zn. It was also found that wheat grains could accumulate more metals compared with maize grains. The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.展开更多
文摘The distribution of various fractions of Zn, Fe, Cu and Mn in 15 types of sods in China and its rela-tionship with plant availability were studied. Wactions of various elements were found to have some similarcharacteristic distribution regularities in wirious types of soils, but various soil types derered to varyingdegrees in the distribution of each fraction. Soil physico-chemical properties, such as pH, CEC and thecontents of OM, CaCO_3, free Fe, free Mn and P_2O_5, were signdicantly correlated with the distribution ofelemental fractions, and a significazit correlation also existed between the distribution and plant amilabilityof elemental fractions. Varfous fractions of each element were divided into two groups bed on their plantavailability. The correlation between the distribution of combination fractions aiid plaxit availability indi-cated a significantly or an extremely significantly positive correlation for Group I but a significantly or anextremely significantly negative correlation for Group II. Therefore, the fractions in Group I were primarypools of available nutrients, while those in Group II could hardly provide available nutrients for plants. Descreasing the transformation of corresponding elements into fractions of Group 11 and increasing the storagecapacity of various fractions of Group I were an important direction for regulation and controiling of soilnutrients. However, some Particular soils with too high contents of Zn, Fe, Cu and Mn should be regulatedand controlled adversely
基金Project (No. 1999[95]) supported by the Education Ministry of China.
文摘Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. The results showed that the concentrations of soluble Zn in surface runoff were significantly negatively correlated with the contents of <0.002 mm particles and CEC of the soils, indicating that Zn was mostly adsorbed by clays in the soils. The contents of Cu and Hg in surface runoff were positively related to their contents in the soils. The amounts of Cu, Zn, Pb and Hg removed by surface runoff were influenced by the amounts of soil and water losses and their contents in the soils, and were closely related to the contents of soil particles 1-0.02 mm in size.
基金Project supported by the National Natural Science Foundation of China (Nos. 49631010 and 49771048),China Postdoctor Science Foun
文摘The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A laboratory experiment was performed to study the effects of combined pollution of Cu, Ph, Zn and Cd on soil K status as indicated by chemical fractions, adsorption-desorption and quantity/intensity (Q/I) relationship of K in a Typic Udic Ferrisol (generally called red soil), by employing uniform design and single factor design. Compared to the control, content of exchangeable K was decreased, but that of soluble K increased in the samples contaminated with heavy metals. Due to heavy metal pollution, potassium adsorption was reduced by 5% to 22%, whereas the desorption percentage of adsorbed K increased by 2% to 32%. The Q/I curves shifted downward, potassium buffering capacity (PBCK) decreased, and equilibrium activity ratio values (ARoK) increased with increasing heavy metal pollution. These influences followed the sequences of Ph>Cu>Zn and combined pollution>single one. Displacement of K from canon exchange sites and decrease in soil CEC due to heavy metals should be responsible for the changes of soil K behaviours. The findings suggest that heavy metal pollution of soil might aggravate the degradation of soil K fertility by decreasing K adsorption and buffering capacity and increasing desorption.
基金National Natural Science Foundation of China(Nos.49831070 and 40125005)theNational Key Basic Research Support Foundation of China (No. G1999011807)the Jiangsu Provincial Foundation for Young Scientists (No. BQ98050).
文摘Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a centrifugation and filtration technique.Meal speciation in the soil solution was determined by a cationexchange resin method. Acetic acid and EDTA extracting solutions wereused for extraction of metals in soil solid surfaces. Metaldistribution in different fractions of soil solid phase wasdetermined using a three-step sequential extraction scheme.
基金National Key Basic Research Support Foundation(NKBRSF)of China(No.G1999011807) the Joint Open Laboratory of Soil and Environment between the Institute of Soil Science of the Chinese Academy ot Sciences and Hong Kong Baptist University. 2Corresp
文摘A modified glass bead compartment cultivation system was used tocompare some chemical and biolog- ical properties of the twoarbuscular mycorrhizal (AM) fungi Glmomus mosseae and Glomusversiforme using maize (Zea mays) as the host plant with four addedlevels of available phosphorus (P). The proportion of host plant rootlength infected was determined t harvest. Shoot and root yields andnutrient concentra- tions were determined, together with the nutrientconcentrations in the AM fungal external mycelium. The morphology ofvarious mycorrhizal structures of the two AM fungi was also comparedby microscopic obser- vation.
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. M403038).
文摘Bioavailability of heavy metals in soil organic matter depends on itscomponents. Characterization of heavy metal distributions in different fractions of soil organicmatter is needed for better understanding of the fate of heavy metals. This study investigated theaccumulation and partitioning of copper and zinc among different size particulate organic matter(POM) fractions in polluted soils from a former iron ore processing site in western Shaoxing County,Zhejiang Province. Physical fractionations were carried out to separate soil primary particlesaccording to their size and density. Copper and Zn had a heterogeneous distribution among soilparticle fractions. Copper and Zn were significantly (p < 0.05) enriched in the POM fractions. >0.05 mm POM and < 0.05 mm fine soil fractions were mainly responsible for Cu and Zn retention insoils. The POM fraction contained up to 1 322 mg Cu kg^(-1) and 1115 mg Zn kg^(-1) and the fine soilfraction contained up to 422 mg Cu kg^(-1) and 537 mg Zn kg^(-1). The total POM fraction wasresponsible for 15.8%-41.2% and 12.2%-31.7% of the total amount of Cu and Zn, respectively, in thepolluted soils. The percentages of Cu and Zn associated with organic matter in < 0.05 mm fine soilfractions for the polluted soils ranged from 14.1% to 24.5%, and 5.4% to 15.8%, respectively.Accumulation of soil organic matter could increase enrichment of Cu (or Zn) in the POM fractions.Also, Cu provided a greater enrichment in the POM fractions than Zn.
基金Project(K1201010-61)supported by the Science and Technology Program of Changsha,ChinaProject(51074191)supported by the National Natural Science Foundation of ChinaProject(2012BAC09B04)supported by National Key Technology Research and Development Program,China
文摘Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.
基金This paper was supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2005CB 121104) and the National Natural Science Foundation of China (No. 40471064).
文摘Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of simulated acidification of the soils. The results showed that soil acidification could change chemical forms of Cu and Zn in the soils, impel the transformation of Cu and Zn from carbonate associated fractions to exchangeable, organic matter and oxides associated fractions, and thus increase the release potential of Cu and Zn in the soils. The effect of the acidification on Zn leaching was more significant than that of Cu. Water solubility of Cu and Zn in the soils was increased with decreasing pH, and the solubility of Cu and Zn was increased exponentially at pH 3.8-4.5, and 6.2-6.5, respectively.
基金Project supported by the National Natural Science Foundation of China (No. 39370563)by the NationalKey Basic Research Suppor
文摘Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients, B, Mo, Cu, Zn, Fe, and Mn, in soils derived from various parent materials in the forest area of Taihu Lake region in southeast China. The results showed that the dry weight of individual current-year needle of Chinese fir (Cunninghamia lanceolata) grown on the soi1 derived from granite parent rock was increased by 8% and 13% in comparison with that grown on the soils derived from sandstone and ash-tuff parent rock, respectively. And such dry weight of loblolly pine (Pinus taeda) grown on the soil derived from sandstone parent rock was increased by 21% in comparison with that on the soil derived from ash-tuff parent rock. One of the reasons for those results was that micronutrients content in the soil derived from ash-tuff parent rock were not sufficient to meet the requirement of the growth of Chinese fir and loblolly pine, i.e., micronutrients in soil were deficient and/or induced deficient. The amounts of Cu, Zn, Fe, and Mn uptake by Chinese fir and loblolly pine were in agreement with the contents of available micronutrients in soil respectively, except for B and Mo. Meanwhile, there might exist an "antagonism" between the uptake of B versus Mo by trees, although more studies are needed to confirm it. Regression analysis indicated that amount of a soil available micronutrient was correlated to the type of parent material and its total amount in the forest floor, except for B. The F test identified that the correlation of each equation reached the significant level to different extents, respectively. The t test confirmed that amount of available forms was mainly depended on the type of parent material for Mo, Cu, Zn and Mn but on the forest floor for Fe. There was a feedback effect of forest stand on the amount of soil available micronutrients. The ability of accumulating available micronutrients in soil was better by the sawtooth oak (Quercus acutissima) stand than by the Chinese fir stand (except for B). The ability of accumulating available Zn, Fe, Mn and Mo in soil was better by the Chinese fir stand than by the loblolly pine stand, while as for available B and Cu, by the latter was better than by the former. When discussing the effect of forest stand on the amount of soil available micronutrients, not only the amount of micronutrient in the forest floor and the parent materials but also the amount of micronutrient taken up by current-year needles have to be considered.
基金Supported by the Beijing Drainage Group Co. Ltd. and the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 200903015)
文摘The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China. In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS. The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts, respectively. The results from the field experiment showed that the contents of total Zn, Cu, and Cd in the soils increased linearly with SS application rates. With increasing SS application rates, the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau, while there was no significant change of Cd content in the maize grains. The bioconcentration factors of the metals in the grains of wheat and maize were found to he in the order of Zn 〉 Cu 〉 Cd, but for the straw the order was Cd 〉 Cu 〉 Zn. It was also found that wheat grains could accumulate more metals compared with maize grains. The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.