A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes ...A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.展开更多
The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
Input of large amounts of N and S compounds into forest ecosystems through atmospheric deposition is a significant risk for soil acidification in the oil sands region of Alberta.We evaluated the sensitivity of forest ...Input of large amounts of N and S compounds into forest ecosystems through atmospheric deposition is a significant risk for soil acidification in the oil sands region of Alberta.We evaluated the sensitivity of forest soils to acidification in two watersheds(Lake 287 and Lake 185)with contrasting hydrological regimes as a part of a larger project assessing the role of N and S cycling in soil acidification in forest ecosystems.Fifty six forest soil samples were collected from the two watersheds by horizon from 10 monitoring plots dominated by either jack pine(Pinus banksiana)or aspen(Populus tremuloides).Soils in the two watersheds were extremely to moderately acidic with pH(CaCl_2)ranging from 2.83 to 4.91.Soil acid-base chemistry variables such as pH,base saturation,Al saturation,and acid-buffering capacity measured using the acetic acid equilibrium procedure indicated that soils in Lake 287 were more acidified than those in Lake 185. Acid-buffering capacity decreased in the order of forest floor>subsurface mineral soil>surface mineral soil.The most dramatic differences in percent Ca and Al saturations between the two watersheds were found in the surface mineral soil horizon.Percent Ca and Al saturation in the surface mineral soil in Lake 287 were 15% and 70%,respectively;the percent Ca saturation value fell within a critical range proposed in the literature that indicates soil acidification.Our results suggest that the soils in the two watersheds have low acid buffering capacity and would be sensitive to increased acidic deposition in the region.展开更多
Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showe...Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (T = 0.684*). Organic Hg, the sum of acid-soluble organic Hg and alkali-soluble Hg, was positively affected by silt (2-20 μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.展开更多
BISHOP’s effective stress or two state stress variables are unsatisfactory for unsaturated soils where one of fluid phases is discontinuous, so new expressions of effective stress should be founded. The approach for ...BISHOP’s effective stress or two state stress variables are unsatisfactory for unsaturated soils where one of fluid phases is discontinuous, so new expressions of effective stress should be founded. The approach for derivation was according to the principle of equilibrium of forces (i.e., the stress-sharing principle), and it was firstly validated by demonstrating TERZAGHI’s principle of effective stress. And then, the derivations were subdivided into four parts according to different pore air states: 1) air bubbles were spherical and suspended in pore water; 2) air bubbles were bound on soil skeleton; 3) air bubbles held almost the single section of pore; 4) air phase was continuous. The different formulae of effective stress were presented. Conclusions are drawn as follows: 1) For nearly-saturated soils, the "real" effective stress would be a little smaller than TERZAGHI’s effective stress; 2) For soils in which air phase is discontinuous in the form of bubbles, a new concept of pore air elastic pressure is put forward, and the total stress can be constituted by effective stress, pore water pressure and pore air elastic pressure; 3) For soils in which air phase is continuous, effective stress is equal to the value of the total stress plus suction; 4) Suction can be divided into two parts: one is the effect caused by additional pressure, and the other is the contract action by the "skin".展开更多
Biot' s two-phase theory for fluid-saturated porous media was applied in a study carried out to investigate the influence of water saturation on propagation of elastic wave in transversely isotropic nearly saturat...Biot' s two-phase theory for fluid-saturated porous media was applied in a study carried out to investigate the influence of water saturation on propagation of elastic wave in transversely isotropic nearly saturated soil. The characteristic equations for wave propagation were derived and solved analytically. The results showed that there are four waves: the first and second quasi-longitudinal waves (QP1 and QP2), the quasitransverse wave (QSV) and the anti-plane transverse wave (SH) . Numerical results are given to illustrate theinfluence of saturation on the velocity, dispersion and attenuation of the four body waves. Some typical numerical results are discussed and plotted. The results can be meaningful for soil dynamics and earthquake engineering.展开更多
Desorption of total saturated fractions(i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions(i.e. PAH, defined as ...Desorption of total saturated fractions(i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions(i.e. PAH, defined as the summation of the concentrations of all polycyclic aromatic fractions including the 16 EPA priority PAH) in two types of soils subjected to the changes of p H and salinity and different bio-surfactant concentrations were investigated. In general, compared with the experiments without bio-surfactant addition, adding rhamnolipid to crude oil-water systems at concentrations above its critical micelle concentration(CMC) values benefits SAT and PAH desorption. The results indicate that the change of p H could have distinct effects on rhamnolipid performance concerning its own micelle structure and soil properties. For loam soil, the adsorption of non-aqueous phase liquid(NAPL) and rhamnolipid would be the principle limiting factors during the NAPL removal procedure. For sand soil, less amount of rhamnolipid is adsorbed onto soil. Thus, with the increase of salinity, the solubilization and desorption of rhamnolipid solution are more significant. In summary, the p H and salt sensitivity of the bio-surfactant will vary according to the specific structure of the surfactant characteristics and soil properties.展开更多
Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The trig...Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.展开更多
The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained ...The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.展开更多
基金the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803),the National Natural Science Foundation of China (Nos. 40371058 and 40471018), the Jiangsu Provincial Society Deve-lopment Program of China (No. BS2003005), and the Institute of Geography and Limnology, Chinese Academy of Sciences(No. S250020).
文摘A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
基金Project supported by the NO_x-SO_2 Management Working Group(NSMWG)under the Cumulative Environmental Management Association(CEMA),Canada(No.2006-0003).
文摘Input of large amounts of N and S compounds into forest ecosystems through atmospheric deposition is a significant risk for soil acidification in the oil sands region of Alberta.We evaluated the sensitivity of forest soils to acidification in two watersheds(Lake 287 and Lake 185)with contrasting hydrological regimes as a part of a larger project assessing the role of N and S cycling in soil acidification in forest ecosystems.Fifty six forest soil samples were collected from the two watersheds by horizon from 10 monitoring plots dominated by either jack pine(Pinus banksiana)or aspen(Populus tremuloides).Soils in the two watersheds were extremely to moderately acidic with pH(CaCl_2)ranging from 2.83 to 4.91.Soil acid-base chemistry variables such as pH,base saturation,Al saturation,and acid-buffering capacity measured using the acetic acid equilibrium procedure indicated that soils in Lake 287 were more acidified than those in Lake 185. Acid-buffering capacity decreased in the order of forest floor>subsurface mineral soil>surface mineral soil.The most dramatic differences in percent Ca and Al saturations between the two watersheds were found in the surface mineral soil horizon.Percent Ca and Al saturation in the surface mineral soil in Lake 287 were 15% and 70%,respectively;the percent Ca saturation value fell within a critical range proposed in the literature that indicates soil acidification.Our results suggest that the soils in the two watersheds have low acid buffering capacity and would be sensitive to increased acidic deposition in the region.
基金the Doctoral Foundation, Education Ministry of China (No. 970601) and the BeijingNatural Science Foundation, China (No. 699000
文摘Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (T = 0.684*). Organic Hg, the sum of acid-soluble organic Hg and alkali-soluble Hg, was positively affected by silt (2-20 μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.
基金Project(50878191) supported by the National Natural Science Foundation of ChinaProject(Y12E090030) supported by Zhejiang Provincial Natural Science Foundation, China
文摘BISHOP’s effective stress or two state stress variables are unsatisfactory for unsaturated soils where one of fluid phases is discontinuous, so new expressions of effective stress should be founded. The approach for derivation was according to the principle of equilibrium of forces (i.e., the stress-sharing principle), and it was firstly validated by demonstrating TERZAGHI’s principle of effective stress. And then, the derivations were subdivided into four parts according to different pore air states: 1) air bubbles were spherical and suspended in pore water; 2) air bubbles were bound on soil skeleton; 3) air bubbles held almost the single section of pore; 4) air phase was continuous. The different formulae of effective stress were presented. Conclusions are drawn as follows: 1) For nearly-saturated soils, the "real" effective stress would be a little smaller than TERZAGHI’s effective stress; 2) For soils in which air phase is discontinuous in the form of bubbles, a new concept of pore air elastic pressure is put forward, and the total stress can be constituted by effective stress, pore water pressure and pore air elastic pressure; 3) For soils in which air phase is continuous, effective stress is equal to the value of the total stress plus suction; 4) Suction can be divided into two parts: one is the effect caused by additional pressure, and the other is the contract action by the "skin".
文摘Biot' s two-phase theory for fluid-saturated porous media was applied in a study carried out to investigate the influence of water saturation on propagation of elastic wave in transversely isotropic nearly saturated soil. The characteristic equations for wave propagation were derived and solved analytically. The results showed that there are four waves: the first and second quasi-longitudinal waves (QP1 and QP2), the quasitransverse wave (QSV) and the anti-plane transverse wave (SH) . Numerical results are given to illustrate theinfluence of saturation on the velocity, dispersion and attenuation of the four body waves. Some typical numerical results are discussed and plotted. The results can be meaningful for soil dynamics and earthquake engineering.
基金Project(8102032) supported by Beijing Natural Science Foundation of China
文摘Desorption of total saturated fractions(i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions(i.e. PAH, defined as the summation of the concentrations of all polycyclic aromatic fractions including the 16 EPA priority PAH) in two types of soils subjected to the changes of p H and salinity and different bio-surfactant concentrations were investigated. In general, compared with the experiments without bio-surfactant addition, adding rhamnolipid to crude oil-water systems at concentrations above its critical micelle concentration(CMC) values benefits SAT and PAH desorption. The results indicate that the change of p H could have distinct effects on rhamnolipid performance concerning its own micelle structure and soil properties. For loam soil, the adsorption of non-aqueous phase liquid(NAPL) and rhamnolipid would be the principle limiting factors during the NAPL removal procedure. For sand soil, less amount of rhamnolipid is adsorbed onto soil. Thus, with the increase of salinity, the solubilization and desorption of rhamnolipid solution are more significant. In summary, the p H and salt sensitivity of the bio-surfactant will vary according to the specific structure of the surfactant characteristics and soil properties.
文摘Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.
基金Supported by the National Natural Science Foundation of China(No.51409261)
文摘The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.