Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China we...Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates(< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.展开更多
In the design of revetment engineering under wave action, to resist the wave action, the pattern of top layer-filter layer-core (subsoil) is often adopted. In general, the structure of top layer is usually single di...In the design of revetment engineering under wave action, to resist the wave action, the pattern of top layer-filter layer-core (subsoil) is often adopted. In general, the structure of top layer is usually single discrete blocks, typically accropode blocks, four-leg square hollow blocks and barrier boards, and also acropode, riprap, paved rock blocks or concrete slabs with smaller waves. Such top layer has been provided with many research findings on its stability and is widely used in engineering. Setting a filter layer between the top layer and the lower dike core mainly has two functions: (1) giving certain permeability, to minimize the hydrodynamic load directly acting on the lower foundation soil; (2) giving certain hydraulic tightness, to prevent fine sediment of the lower foundation soil from being washed out. This paper is focused on a special filter layer with geotextile as its upper structure and coarse aggregate as its lower structure. By simulating geotextile with different permeability and coarse aggregate with different size, the pressure of top of cover layer and the down side of the geotextile is tested under wave actions, and compared with theoretical analysis, in this way, how the permeability of geotextile impacts the stability of top layer is studied. The research shows that when the filter layer under the geotextile has high permeability and the geotextile's permeability gets poorer, the uplift force to geotextile and the top layer will be increased under wave action, which will cause damage to the top layer when it is greater than the vertical component of the underwater gravity along the slope surface.展开更多
The dam of Three Gorges Project is a concrete gravity dam with the crest elevation of 185 m,the maximum height of 181 m and dam axis length of 2 309.5 m.The dam consists of spillway,powerhouse,non-over flow,ship-lift,...The dam of Three Gorges Project is a concrete gravity dam with the crest elevation of 185 m,the maximum height of 181 m and dam axis length of 2 309.5 m.The dam consists of spillway,powerhouse,non-over flow,ship-lift,temporary ship-lock,left diversion wall and longitudinal cofferdam blocks.Some key techniques relating to dam structure design are presented,including hydraulics of flood discharge structure,dam joint design,layout and structural type of penstock,deep anti-sliding stability of dam foundation,reconstruction of temporary ship-lock and closed drainage and pumping of dam foundation.展开更多
The analysis of stable isotopes of sulfur(δ34S) is a useful tool for identifying sources of sulfur in soils. Concentrations and sulfur(S)isotopes of water-soluble sulfate(WSS), adsorbed sulfate(AS), residual sulfur(R...The analysis of stable isotopes of sulfur(δ34S) is a useful tool for identifying sources of sulfur in soils. Concentrations and sulfur(S)isotopes of water-soluble sulfate(WSS), adsorbed sulfate(AS), residual sulfur(RS), and total sulfur(TS) in uncultivated surface soils of four Chinese provinces were systematically analyzed for identifying sources of S in the soils. Green and healthy mosses(Haplocladium microphyllum) were sampled as bioindicators. The mean WSS concentration(27.8 ± 23.4 mg kg-1) in the surface soils was lower than those of AS(101.4 ± 57.0 mg kg-1) and RS(381.5 ± 256.7 mg kg-1). The mean δ34S values of WSS and AS were very similar(about2.0‰), lower than those of RS(8.0‰) and TS(6.1‰). A significant linear correlation was found between the δ34S values of AS and WWS(y = 1.0002x- 0.0557, P < 0.0001), indicating that sulfate adsorption in the soils did not markedly fractionate S. All S species in the soils of Guizhou Province were characterized by the lowest δ34S values, consistent with the most34S-depleted rainwater sulfate reported at Guiyang of Guizhou Province. The δ34S values of sulfate in mosses and rainwater previously reported were significantly linearly correlated with those of both WWS and AS in surface soils, suggesting that atmospheric S input was an important source for soil WSS and AS. However, there were no significant correlations between isotopic composition of rainwater sulfate and RS or TS.The slopes of all these significant linear correlations(soil/rainwater or soil/moss isotopic ratio) were 0.4–0.6, indicating that inorganic sulfate in the surface soils should be a result of mixing of deposited atmospheric sulfate with a more34S-depleted sulfate component possibly from mineralization of RS.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41501102,41471081,41601104)Science and Technology Innovation Project of China Academy of Agricultural Sciences(No.2017-cxgc-lyj)Science&Technology Project of Industry(No.201403014)
文摘Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates(< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.
文摘In the design of revetment engineering under wave action, to resist the wave action, the pattern of top layer-filter layer-core (subsoil) is often adopted. In general, the structure of top layer is usually single discrete blocks, typically accropode blocks, four-leg square hollow blocks and barrier boards, and also acropode, riprap, paved rock blocks or concrete slabs with smaller waves. Such top layer has been provided with many research findings on its stability and is widely used in engineering. Setting a filter layer between the top layer and the lower dike core mainly has two functions: (1) giving certain permeability, to minimize the hydrodynamic load directly acting on the lower foundation soil; (2) giving certain hydraulic tightness, to prevent fine sediment of the lower foundation soil from being washed out. This paper is focused on a special filter layer with geotextile as its upper structure and coarse aggregate as its lower structure. By simulating geotextile with different permeability and coarse aggregate with different size, the pressure of top of cover layer and the down side of the geotextile is tested under wave actions, and compared with theoretical analysis, in this way, how the permeability of geotextile impacts the stability of top layer is studied. The research shows that when the filter layer under the geotextile has high permeability and the geotextile's permeability gets poorer, the uplift force to geotextile and the top layer will be increased under wave action, which will cause damage to the top layer when it is greater than the vertical component of the underwater gravity along the slope surface.
文摘The dam of Three Gorges Project is a concrete gravity dam with the crest elevation of 185 m,the maximum height of 181 m and dam axis length of 2 309.5 m.The dam consists of spillway,powerhouse,non-over flow,ship-lift,temporary ship-lock,left diversion wall and longitudinal cofferdam blocks.Some key techniques relating to dam structure design are presented,including hydraulics of flood discharge structure,dam joint design,layout and structural type of penstock,deep anti-sliding stability of dam foundation,reconstruction of temporary ship-lock and closed drainage and pumping of dam foundation.
基金supported by the National Natural Science Foundation of China(Nos.41173027,41273027,and 40721002)the West Light Foundation of the Chinese Academy of Sciences
文摘The analysis of stable isotopes of sulfur(δ34S) is a useful tool for identifying sources of sulfur in soils. Concentrations and sulfur(S)isotopes of water-soluble sulfate(WSS), adsorbed sulfate(AS), residual sulfur(RS), and total sulfur(TS) in uncultivated surface soils of four Chinese provinces were systematically analyzed for identifying sources of S in the soils. Green and healthy mosses(Haplocladium microphyllum) were sampled as bioindicators. The mean WSS concentration(27.8 ± 23.4 mg kg-1) in the surface soils was lower than those of AS(101.4 ± 57.0 mg kg-1) and RS(381.5 ± 256.7 mg kg-1). The mean δ34S values of WSS and AS were very similar(about2.0‰), lower than those of RS(8.0‰) and TS(6.1‰). A significant linear correlation was found between the δ34S values of AS and WWS(y = 1.0002x- 0.0557, P < 0.0001), indicating that sulfate adsorption in the soils did not markedly fractionate S. All S species in the soils of Guizhou Province were characterized by the lowest δ34S values, consistent with the most34S-depleted rainwater sulfate reported at Guiyang of Guizhou Province. The δ34S values of sulfate in mosses and rainwater previously reported were significantly linearly correlated with those of both WWS and AS in surface soils, suggesting that atmospheric S input was an important source for soil WSS and AS. However, there were no significant correlations between isotopic composition of rainwater sulfate and RS or TS.The slopes of all these significant linear correlations(soil/rainwater or soil/moss isotopic ratio) were 0.4–0.6, indicating that inorganic sulfate in the surface soils should be a result of mixing of deposited atmospheric sulfate with a more34S-depleted sulfate component possibly from mineralization of RS.