On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN...On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade IV and V. And the ratios of soil samples grade IV and V in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.展开更多
We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sa...We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sampling were conducted in 3 sites of the hill range: Site 1 Pterocarpus dominated forest (PTF) (19°40'02.2'' N and 83°21'23.1'' E), Site 2 Mangifera dominated forest (MAF) (19°40'02.8'' N and 83°21'40.8'' E) and Site 3 Mixed forest (MIF) (19°36'47.1" N and 83°21'02.7'' E). A total of 28 families, 42 genera, 46 tree species, and 286 individual trees were recorded on an area of0.6 ha. Tree density varied between 470 and 49o individuals ha and average basal area between 3.16 and l0.04 m2 ha-1. Shannon Index (H') ranged from 2.34 to 4.53, Simpson's Index ranged from 0.07 to o.09, and equitability Index ranged from 0.7 to 1.34. The number of individuals was highest in the girth at breast height (GBH) class of 50-7o cm. The soil nutrient status of the three forest types was related to tree species diversity. The soil pH value of the three sites reflected the slightly acidic nature of the area. Species diversity was positively correlated with organic carbon and phosphorus and negatively with nitrogen, EC and pH. The results of the current study may be helpful to further develop a conservation planfor tree species in tropical sacred forest ecosystems.展开更多
The cushion plant Androsace tapete is an endemic species that is widely distributed in the Qinghai-Tibetan Plateau, and also predominant in the alpine grassland that is locally degraded due to overgrazing and other re...The cushion plant Androsace tapete is an endemic species that is widely distributed in the Qinghai-Tibetan Plateau, and also predominant in the alpine grassland that is locally degraded due to overgrazing and other reasons. As an ecosystem engineer cushion plant, its ability to facilitate the restoration of degraded alpine grassland was studied in a degraded alpine grassland at an elevation of 4500 m on the southern slope of the Nyainqentanglha Mountains in Damxung. The species diversity, soil nutrients and water content underneath and outside the cushion plant A. tapete were investigated. The results showed that soil nutrients underneath the A. tapete cushion were significantly increased by about 16%-48% compared to outside the cushion, of which the organic matter and total N were increased by 16.2% and 18.9% respectively, and the soil water content was increased about 12%. The index of species diversity of richness(S), Shannon-Wiener’s H and Simpson’s D all increased with the coverage of cushion plant A. tapete. Our results suggested that this cushion plant can facilitate restoration of the degraded alpine grassland by modifying the local soil environment and increasing the community diversity, so it should be conserved for the restoration of degraded alpine grasslands on the Qinghai-Tibetan Plateau.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40572170, 40871088 )
文摘On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade IV and V. And the ratios of soil samples grade IV and V in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.
文摘We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sampling were conducted in 3 sites of the hill range: Site 1 Pterocarpus dominated forest (PTF) (19°40'02.2'' N and 83°21'23.1'' E), Site 2 Mangifera dominated forest (MAF) (19°40'02.8'' N and 83°21'40.8'' E) and Site 3 Mixed forest (MIF) (19°36'47.1" N and 83°21'02.7'' E). A total of 28 families, 42 genera, 46 tree species, and 286 individual trees were recorded on an area of0.6 ha. Tree density varied between 470 and 49o individuals ha and average basal area between 3.16 and l0.04 m2 ha-1. Shannon Index (H') ranged from 2.34 to 4.53, Simpson's Index ranged from 0.07 to o.09, and equitability Index ranged from 0.7 to 1.34. The number of individuals was highest in the girth at breast height (GBH) class of 50-7o cm. The soil nutrient status of the three forest types was related to tree species diversity. The soil pH value of the three sites reflected the slightly acidic nature of the area. Species diversity was positively correlated with organic carbon and phosphorus and negatively with nitrogen, EC and pH. The results of the current study may be helpful to further develop a conservation planfor tree species in tropical sacred forest ecosystems.
基金The National Natural Science Foundation of China (31770477)The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19050502, XDA20010201)The National Key R&D Program of China (2017YFA0604801, 2016YFC0502001)。
文摘The cushion plant Androsace tapete is an endemic species that is widely distributed in the Qinghai-Tibetan Plateau, and also predominant in the alpine grassland that is locally degraded due to overgrazing and other reasons. As an ecosystem engineer cushion plant, its ability to facilitate the restoration of degraded alpine grassland was studied in a degraded alpine grassland at an elevation of 4500 m on the southern slope of the Nyainqentanglha Mountains in Damxung. The species diversity, soil nutrients and water content underneath and outside the cushion plant A. tapete were investigated. The results showed that soil nutrients underneath the A. tapete cushion were significantly increased by about 16%-48% compared to outside the cushion, of which the organic matter and total N were increased by 16.2% and 18.9% respectively, and the soil water content was increased about 12%. The index of species diversity of richness(S), Shannon-Wiener’s H and Simpson’s D all increased with the coverage of cushion plant A. tapete. Our results suggested that this cushion plant can facilitate restoration of the degraded alpine grassland by modifying the local soil environment and increasing the community diversity, so it should be conserved for the restoration of degraded alpine grasslands on the Qinghai-Tibetan Plateau.