Water(or H) in the silicate mantle is a key element in influencing Earth's climate, habitability, geochemical evolution, geophysical properties and geodynamical processes, and has received increasing attention in ...Water(or H) in the silicate mantle is a key element in influencing Earth's climate, habitability, geochemical evolution, geophysical properties and geodynamical processes, and has received increasing attention in the past decades. Experimental work under simulated high-pressure and high-temperature conditions is a powerful tool in characterizing the species, distribution, storage capacity and various physicochemical impacts of water in the mantle. In recent years, significant approaches have been acquired about some key physical, chemical and dynamical properties of water in the mantle and their various impacts, as a result of extensive studies by high-pressure and temperature experiments, and our knowledge of Earth's water cycle, especially the deep water cycle, on both temporal and spatial scales has been greatly enhanced. In this paper, a brief review based mainly on experimental studies is presented concerning the current understanding and some recent approaches of water in the silicate mantle, such as the possible origin, amount, storage and the effect on mantle properties.展开更多
Forty-two Cenozoic (mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton (the NCC basalts hereafter) were analyzed for platinum-group elements (PGE, incl...Forty-two Cenozoic (mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton (the NCC basalts hereafter) were analyzed for platinum-group elements (PGE, including Os, It, Ru, Rh, Pt, and Pd). Most of them are alkaline basalts and tholeiites and all of them display little crustal contamination. The total PGE contents of the NCC basalts vary from 0.1 to 0.9 ppb, much lower than those of the primitive mantle values of 23.5 ppb. Primitive man- tie-normalized PGE patterns of these basalts define positive slopes and Pd/Ir ratios vary from 1.2 to 25. In terms of both PGE contents and Pd/Ir ratios, they are quite similar to the mid-ocean ridge basalts. There are no obvious negative correlations be- tween PGE vs. MgO, Ni, and Cu in the NCC basalts, indicating that fractional crystallization of olivine, pyroxene, and/or sul- fides during magmatic process cannot be the controlling factor for the observed PGE variation. The observed Pd/Ir variations of the NCC basalts require involvement of non-chondritic heterogeneous mantle sources. Based on Sr-Nd-Pb-Hf isotopic sys- tematics and incompatible-element signatures, a mixing of partial melts from both asthenospheric peridotites and enclosed mantle eclogites at the top of asthenosphere was proposed for the origin of these NCC basalts. The lenses of eclogites are de- rived from upwelling of recycled continental crust during the westward subduction of the Pacific plate from the -600 km dis- continuity zone. The PGE geochemistry of these basalts provides independent evidence to support this conclusion and the ob- served Pd/Ir variations may reflect variations in proportions of tapped peridotitic and eclogitic melts.展开更多
The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystal...The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system, (Mg,Fe)2SiO4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite (Fe2SiO4), the triple point of fayalite-Fe2SiO4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/Tm of olivine with depth allows us to compare the strength of the up- per mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/Tm of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/Tm of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/Tm 〉 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/Tm is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/Tm of olivine need further investigation. Below 6.4 GPa (〈200 kin), T/TIn of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10-12-10-15 s-1 and low stress in the upper mantle, the [100](010) slip system (A-type fabric) becomes dominant when T/TIn〉 0.55-0.60. When T/Tm〈 0.55-0.60, [001] slip is easier and low T/Tm favors the operation of [001](100) slip system (C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/Tm. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experi- ments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2014CB845904 and 41590622)the National Natural Science Foundation of China(Grant No.41372041)+1 种基金the Recruitment Program of Global Young Experts(China)the Fundamental Research Funds for the Central Universities(China)
文摘Water(or H) in the silicate mantle is a key element in influencing Earth's climate, habitability, geochemical evolution, geophysical properties and geodynamical processes, and has received increasing attention in the past decades. Experimental work under simulated high-pressure and high-temperature conditions is a powerful tool in characterizing the species, distribution, storage capacity and various physicochemical impacts of water in the mantle. In recent years, significant approaches have been acquired about some key physical, chemical and dynamical properties of water in the mantle and their various impacts, as a result of extensive studies by high-pressure and temperature experiments, and our knowledge of Earth's water cycle, especially the deep water cycle, on both temporal and spatial scales has been greatly enhanced. In this paper, a brief review based mainly on experimental studies is presented concerning the current understanding and some recent approaches of water in the silicate mantle, such as the possible origin, amount, storage and the effect on mantle properties.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41173036,40534022)the Chinese Academy of Sciences(Grant No.KZCX2-YW-103)
文摘Forty-two Cenozoic (mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton (the NCC basalts hereafter) were analyzed for platinum-group elements (PGE, including Os, It, Ru, Rh, Pt, and Pd). Most of them are alkaline basalts and tholeiites and all of them display little crustal contamination. The total PGE contents of the NCC basalts vary from 0.1 to 0.9 ppb, much lower than those of the primitive mantle values of 23.5 ppb. Primitive man- tie-normalized PGE patterns of these basalts define positive slopes and Pd/Ir ratios vary from 1.2 to 25. In terms of both PGE contents and Pd/Ir ratios, they are quite similar to the mid-ocean ridge basalts. There are no obvious negative correlations be- tween PGE vs. MgO, Ni, and Cu in the NCC basalts, indicating that fractional crystallization of olivine, pyroxene, and/or sul- fides during magmatic process cannot be the controlling factor for the observed PGE variation. The observed Pd/Ir variations of the NCC basalts require involvement of non-chondritic heterogeneous mantle sources. Based on Sr-Nd-Pb-Hf isotopic sys- tematics and incompatible-element signatures, a mixing of partial melts from both asthenospheric peridotites and enclosed mantle eclogites at the top of asthenosphere was proposed for the origin of these NCC basalts. The lenses of eclogites are de- rived from upwelling of recycled continental crust during the westward subduction of the Pacific plate from the -600 km dis- continuity zone. The PGE geochemistry of these basalts provides independent evidence to support this conclusion and the ob- served Pd/Ir variations may reflect variations in proportions of tapped peridotitic and eclogitic melts.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41590623 & 41172182)the Ministry of Land Resources Public Welfare Industry Special Scientific Research Projects (Grant No. 201311178-3)
文摘The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system, (Mg,Fe)2SiO4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite (Fe2SiO4), the triple point of fayalite-Fe2SiO4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/Tm of olivine with depth allows us to compare the strength of the up- per mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/Tm of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/Tm of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/Tm 〉 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/Tm is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/Tm of olivine need further investigation. Below 6.4 GPa (〈200 kin), T/TIn of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10-12-10-15 s-1 and low stress in the upper mantle, the [100](010) slip system (A-type fabric) becomes dominant when T/TIn〉 0.55-0.60. When T/Tm〈 0.55-0.60, [001] slip is easier and low T/Tm favors the operation of [001](100) slip system (C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/Tm. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experi- ments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.