Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main facto...Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper.展开更多
[Objective] The aim was to choose appropriate floating plant in the wetland in the north China.[Method] Pistia stratiotes L.,Eichhornia crassipes,and Hydrocharis dubia(Bl.) Backer were planted in the aquatic biologi...[Objective] The aim was to choose appropriate floating plant in the wetland in the north China.[Method] Pistia stratiotes L.,Eichhornia crassipes,and Hydrocharis dubia(Bl.) Backer were planted in the aquatic biological pool of constructed subsurface flow wetland system in the reservoir.Through filed investigation,the growth of the three kinds of plants was studied and their adaptability to the northern climate was concluded.[Result] Judging from the growth speed and state of the three kinds of floating plants,the biological characteristic of Pistia stratiotes L.can perfectly adapt the environment in the pool in the reservoir,followed by the Eichhornia crassipes.The growth state of the Hydrocharis dubia(Bl.) Backer was the worst one and it can not adapt to the north environment.[Conclusion] It provided references for the choice of artificial floating plant in the north area.展开更多
We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly...We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.展开更多
Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynami...Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.展开更多
Nitrogen (N) losses from ammonium bicarbonate or urea applied to wheat and then followed immediately by irrigation were investigated. Ammonia volatilization was determined by a micrometeorological method (ammonia samp...Nitrogen (N) losses from ammonium bicarbonate or urea applied to wheat and then followed immediately by irrigation were investigated. Ammonia volatilization was determined by a micrometeorological method (ammonia sampler), total N loss was estimated by the 15N mass balance method, and denitrification loss was measured by the difference method (calculated from the difference between the total N loss and ammonia loss)and a direct method (measuring the emission of (N2+N2O)-15N ). Total ammonia losses from ammonium bicarbonate and urea in 33 days were 8.7% and 0.9% of the applied nitrogen, respectively. The corresponding total N losses were 21.6% and 29.5%. Apparent denitrification losses (by the difference method) were rather high, being 12.9% from ammonium bicarbonate and 28.6% from urea. However, no emission of (N2+N2O)-15N was detected using the direct method.展开更多
A computational fluid dynamic ( CFD ) analysis of air movement and aerosol particle transport in a two-zone ventilated room with an inter-zonal opening is presented to study the impact of ventilation strategies and ...A computational fluid dynamic ( CFD ) analysis of air movement and aerosol particle transport in a two-zone ventilated room with an inter-zonal opening is presented to study the impact of ventilation strategies and size of the opening on indoor particle dispersion and concentration distribution. The comparisons of average particle concentrations in both zones between the computations and the experiments from the literature are generally satisfactory and acceptable. The combined effects of sizes of the opening and the inlet and outlet locations (three different strategies) are simulated and discussed. The results show that ventilation strategy and size of the opening influence the particle removal rate in zone 1. The removal rate is decreased when the air supply system is changed from the tap-inlet to the bottom-inlet configuration. The top-inlet system obtains a better particle deposition in zone I than the bottom-inlet configuration. However, the particle concentration at breathing level is lower for bottomsupply system than for top-supply. Decreasing the size of interzonal opening increases the particle deposition rate in zone 1 only for the top.supply system, especially for coarse particles.展开更多
Simulations were conducted with the regional climate model RegCM incorporating water table dynamics from 1 September 1982 to 28 August 2002 to detect precipitation and temperature extremes. Compared with observed r10(...Simulations were conducted with the regional climate model RegCM incorporating water table dynamics from 1 September 1982 to 28 August 2002 to detect precipitation and temperature extremes. Compared with observed r10(number of days with precipitation ≥ 10 mm d–1), RegCM3_Hydro(the regional climate model with water table dynamics considered) simulated rain belts, including those in southern China and the middle and lower reaches of the Yangtze River, and provided data for arid to semi-arid areas such as the Heihe River Basin in northwestern China. RegCM3_Hydro indicated a significant increasing trend of r95p(days with daily precipitation greater than the 95th percentile of daily amounts) for the Yangtze, Yellow, and Pearl River basins, consistent with r95p observations. The Haihe River Basin was also chosen as a specific case to detect the effect of groundwater on extreme precipitation using peaks over threshold(POT)-based generalized Pareto distribution(GPD) with parameters estimated by the L-moment method. Quantile plots showed that all but a few of the plotted points were distributed near diagonal lines and the modeled data fitted well with the samples. Finally, the effects of water table dynamics on temperature extremes were also evaluated. In the Yellow River Basin and Songhuajiang River Basin, the trends of the number of warm days(TX95n) from RegCM3_Hydro matched observed values more closely when water table dynamics were considered, and clearly increasing numbers of warm days from 1983 to 2001 were detected.展开更多
The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variat...The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.展开更多
A study was conducted in a hilly area of Sichuan Province,Southwestern China, to compare the streamflow and soil moisture in two upland watersheds with different land use patterns. One was an agroforestry watershed, w...A study was conducted in a hilly area of Sichuan Province,Southwestern China, to compare the streamflow and soil moisture in two upland watersheds with different land use patterns. One was an agroforestry watershed, which consisted mainly of trees with alder (Alnus cremastogyne Burkill) and cypress (Cupressus funebris Endl.) planted in belts or strips with a coverage of about 46%, and the other was a grassland primarily composed of lalang grass (Imperata cylindrica var. major (Nees) C. E. Hubb.), filamentary clematis (Clematis filamentosa Dunn) and common eulaliopsis (Eulaliopsis binata (Retz.) C. E. Hubb) with a coverage of about 44%. Streamflow measurement with a hydrograph established at the watershed outlet showed that the average annual streamflow per 100 mm rainfall from 1983 to 1992 was 0.36 and 1.08 L s-1 km-2 for the agroforestry watershed and the grass watershed, respectively. This showed that the streamflow of the agroforestry watershed was reduced by 67% when compared to that of the grass watershed. The peak average monthly streamflow in the agroforestry watershed was over 5 times lower than that of the grass watershed and lagged by one month. In addition, the peak streamflow during a typical rainfall event of 38.3 mm in August 1986 was 37% lower in the agroforestry watershed than in the grass watershed. Results of the moisture contents of the soil samples from 3 slope locations (upper, middle and lower slopes) indicated that the agroforestry watershed maintained generally higher soil moisture contents than the grass watershed within 0-20 and 20-80 cm soil depths for the upper slope, especially for the period from May through July. For the other (middle and lower) slopes, soil moisture contents within 20-80 cm depth in the agroforestry watershed was generally lower than those in the grass watershed, particularly in September, revealing that water consumption by trees took place mainly below the plow layer. Therefore, agroforestry land use types might offer a complimentary model for tree-annual crop water utilization.展开更多
A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For th...A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.展开更多
The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are exp...The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are explored based on daily meteorological data contained in the Daily Surface Climate Dataset for China (V3.0) during the period 1960–2012. Results show that winter snowfall in the YHRB exhibits consistent anomalies over the whole region for the interannual variation during 1960–2012. Further analysis suggests that winter snowfall anomalies in the YHRB are closely linked to the anomalous wintertime SCAND activity. When there is more winter snowfall in the YHRB, SCAND is usually in a positive phase, accompanied by a strengthened Urals blocking high and East Asian trough, which is conducive to strengthened cold-air activity, intensified vertical motions, and more water vapor transport in the YHRB. In contrast, less winter snowfall in the YHRB usually happens in the negative phase of SCAND. Our results provide useful information to better understand the relevant mechanism responsible for anomalous winter snowfall in this area.展开更多
The summer rainfall over the middle-lower reaches of the Yangtze River valley (YRSR) has been estimated with a multi-linear regression model using principal atmospheric modes derived from a 500 hPa geopotential height...The summer rainfall over the middle-lower reaches of the Yangtze River valley (YRSR) has been estimated with a multi-linear regression model using principal atmospheric modes derived from a 500 hPa geopotential height and a 700 hPa zonal vapor flux over the domain of East Asia and the West Pacific.The model was developed using data from 1958 92 and validated with an independent prediction from 1993 2008.The independent prediction was efficient in predicting the YRSR with a correlation coefficient of 0.72 and a relative root mean square error of 18%.The downscaling model was applied to two general circulation models (GCMs) of Flexible Global Ocean-Atmosphere-Land System Model (FGOALS) and Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) to project rainfall for present and future climate under B1 and A1B emission scenarios.The downscaled results pro-vided a closer representation of the observation compared to the raw models in the present climate.In addition,compared to the inconsistent prediction directly from dif-ferent GCMs,the downscaled results provided a consistent projection for this half-century,which indicated a clear increase in the YRSR.Under the B1 emission scenario,the rainfall could increase by an average of 11.9% until 2011 25 and 17.2% until 2036 50 from the current state;under the A1B emission scenario,rainfall could increase by an average of 15.5% until 2011 25 and 25.3% until 2036 50 from the current state.Moreover,the increased rate was faster in the following decade (2011 25) than the latter of this half-century (2036 50) under both emissions.展开更多
After dividing the source regions of the Yellow River into 38 sub-basins, thepaper made use of the SWAT model to simulate streamflow with validation and calibration of theobserved yearly and monthly runoff data from t...After dividing the source regions of the Yellow River into 38 sub-basins, thepaper made use of the SWAT model to simulate streamflow with validation and calibration of theobserved yearly and monthly runoff data from the Tangnag hydrological station, and simulationresults are satisfactory. Five land-cover scenario models and 24 sets of temperature andprecipitation combinations were established to simulate annual runoff and runoff depth underdifferent scenarios. The simulation shows that with the increasing of vegetation coverage annualrunoff increases and evapotranspiration decreases in the basin. When temperature decreases by 2℃and precipitation increases by 20%, catchment runoff will increase by 39.69%, which is the largestsituation among all scenarios.展开更多
The interannual variability of the east asian upper-tropospheric westerly jet(EAJ) in summer is characterized by the meridional displacement of its axis, or a seesaw pattern of zonal wind anomalies between the north...The interannual variability of the east asian upper-tropospheric westerly jet(EAJ) in summer is characterized by the meridional displacement of its axis, or a seesaw pattern of zonal wind anomalies between the northern and southern flanks of the EAJ. This study reveals a close relationship between the surface air temperature in the russian far east and the northern flank of the EAJ. Related to a warmer surface in the russian far east, the westerly decelerates in the northern flank of the EAJ. The relationship can be explained by a positive feedback mechanism between the surface air temperature in the russian far east and the overhead circulation: the anticyclonic circulation anomaly related to a weakened westerly in the northern flank of the EAJ induces surface warming in the russian far east and the warmer surface can in turn act as a heat source and induces a local anticyclonic circulation anomaly in the upper troposphere, therefore decelerating the westerly in the northern flank of the EAJ. The result implies that a better description of the summer surface condition in the russian far east may benefit seasonal forecasts of the EAJ and, subsequently, east asian summer climate.展开更多
The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decada...The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countercurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC relate to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Nio-Southern Oscillation (ENSO) suggests that before El Nio (La Nia) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Nio (La Nia) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.展开更多
The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as we...The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as well as the Ocean General Circulation Model (OGCM). We investigated the correspondence between the SPG and the AMOC in a coupled climate model. Our results confirm that the SPG can be used as an early indicator for the AMOC in the subtropical North Atlantic. Changes in the SPG are closely related to variations in the air-sea heat exchange in the Labrador Sea, and variations in deep water formation and southward dense water transport with the deep western boundary current (DWBC) in the North Atlantic.展开更多
Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or...Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.展开更多
Based on the QuikSCAT data, the features of surface wind distribution of the typhoon Vongfong landfall process are analyzed. We have also studied the variance spectral configuration of the surface wind field using DCT...Based on the QuikSCAT data, the features of surface wind distribution of the typhoon Vongfong landfall process are analyzed. We have also studied the variance spectral configuration of the surface wind field using DCT (Discrete Cosine Transform). The conclusions are as follows: The near-surface wind field is highly asymmetric; the variance components of asymmetric surface wind field depend mainly on the airflow direction of wavenumber 1 and 2. When the typhoon moves west, there are two wave spectral centers lining up in the zonal direction, mainly the airflow from zonal wavenumber 2 and meridional wavenumber 2; when it moves north, there are two wave spectral centers in a meridional array, mainly the airflow from zonal wavenumber 1 and meridional wavenumber 2. The airflow for wavenumber 1 mainly contributes to the variance of the tangential wind while that for wavenumber 2 to the variance of the radial wind. The asymmetrical distribution changes with the large-scale environment and self-rotating circulation around the typhoon. When it approached land, the associated gale appears in front portion in the advancing direction of the storm. It is in effect similar to the model of Chen Lian-shou for typhoon-related gales NNW on the left front portion and SE on the right front portion.展开更多
文摘Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper.
基金Supported by National Water Special Project"River Water Environment Comprehensive Management Technology Study and Comprehensive demonstration"(2008ZX07209-002-002)China Institute of Water Resources and Hydropower Research Open Fund(IWHRKF201013)~~
文摘[Objective] The aim was to choose appropriate floating plant in the wetland in the north China.[Method] Pistia stratiotes L.,Eichhornia crassipes,and Hydrocharis dubia(Bl.) Backer were planted in the aquatic biological pool of constructed subsurface flow wetland system in the reservoir.Through filed investigation,the growth of the three kinds of plants was studied and their adaptability to the northern climate was concluded.[Result] Judging from the growth speed and state of the three kinds of floating plants,the biological characteristic of Pistia stratiotes L.can perfectly adapt the environment in the pool in the reservoir,followed by the Eichhornia crassipes.The growth state of the Hydrocharis dubia(Bl.) Backer was the worst one and it can not adapt to the north environment.[Conclusion] It provided references for the choice of artificial floating plant in the north area.
基金supported by the National Natural Science Foundation of China(Grant No.4087404741174084)
文摘We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.
基金Key Project in National Science & Technology Pillar Program,China(No.2007BAE41B04)
文摘Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.
文摘Nitrogen (N) losses from ammonium bicarbonate or urea applied to wheat and then followed immediately by irrigation were investigated. Ammonia volatilization was determined by a micrometeorological method (ammonia sampler), total N loss was estimated by the 15N mass balance method, and denitrification loss was measured by the difference method (calculated from the difference between the total N loss and ammonia loss)and a direct method (measuring the emission of (N2+N2O)-15N ). Total ammonia losses from ammonium bicarbonate and urea in 33 days were 8.7% and 0.9% of the applied nitrogen, respectively. The corresponding total N losses were 21.6% and 29.5%. Apparent denitrification losses (by the difference method) were rather high, being 12.9% from ammonium bicarbonate and 28.6% from urea. However, no emission of (N2+N2O)-15N was detected using the direct method.
基金National Natural Science Foundation of China (No.40975012)
文摘A computational fluid dynamic ( CFD ) analysis of air movement and aerosol particle transport in a two-zone ventilated room with an inter-zonal opening is presented to study the impact of ventilation strategies and size of the opening on indoor particle dispersion and concentration distribution. The comparisons of average particle concentrations in both zones between the computations and the experiments from the literature are generally satisfactory and acceptable. The combined effects of sizes of the opening and the inlet and outlet locations (three different strategies) are simulated and discussed. The results show that ventilation strategy and size of the opening influence the particle removal rate in zone 1. The removal rate is decreased when the air supply system is changed from the tap-inlet to the bottom-inlet configuration. The top-inlet system obtains a better particle deposition in zone I than the bottom-inlet configuration. However, the particle concentration at breathing level is lower for bottomsupply system than for top-supply. Decreasing the size of interzonal opening increases the particle deposition rate in zone 1 only for the top.supply system, especially for coarse particles.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB428403 and 2009CB421407)the National Natural Science Foundation of China (Grant No. 91125016)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110102)
文摘Simulations were conducted with the regional climate model RegCM incorporating water table dynamics from 1 September 1982 to 28 August 2002 to detect precipitation and temperature extremes. Compared with observed r10(number of days with precipitation ≥ 10 mm d–1), RegCM3_Hydro(the regional climate model with water table dynamics considered) simulated rain belts, including those in southern China and the middle and lower reaches of the Yangtze River, and provided data for arid to semi-arid areas such as the Heihe River Basin in northwestern China. RegCM3_Hydro indicated a significant increasing trend of r95p(days with daily precipitation greater than the 95th percentile of daily amounts) for the Yangtze, Yellow, and Pearl River basins, consistent with r95p observations. The Haihe River Basin was also chosen as a specific case to detect the effect of groundwater on extreme precipitation using peaks over threshold(POT)-based generalized Pareto distribution(GPD) with parameters estimated by the L-moment method. Quantile plots showed that all but a few of the plotted points were distributed near diagonal lines and the modeled data fitted well with the samples. Finally, the effects of water table dynamics on temperature extremes were also evaluated. In the Yellow River Basin and Songhuajiang River Basin, the trends of the number of warm days(TX95n) from RegCM3_Hydro matched observed values more closely when water table dynamics were considered, and clearly increasing numbers of warm days from 1983 to 2001 were detected.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421405)the National Natural Science Foundation of China (Grant Nos.40905027 and 40730952)Program of Knowledge Innovationfor the 3rd period of Chinese Academy of Sciences (Grant No.KZCX2-YW-220)
文摘The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.
基金Project supported by the Innovation Project of the Chinese Academy of Sciences (Nos. KZCX3-SW-330 and KZCX2-413) and the National Natural Science Youth Foundation of China (No. 40201029).
文摘A study was conducted in a hilly area of Sichuan Province,Southwestern China, to compare the streamflow and soil moisture in two upland watersheds with different land use patterns. One was an agroforestry watershed, which consisted mainly of trees with alder (Alnus cremastogyne Burkill) and cypress (Cupressus funebris Endl.) planted in belts or strips with a coverage of about 46%, and the other was a grassland primarily composed of lalang grass (Imperata cylindrica var. major (Nees) C. E. Hubb.), filamentary clematis (Clematis filamentosa Dunn) and common eulaliopsis (Eulaliopsis binata (Retz.) C. E. Hubb) with a coverage of about 44%. Streamflow measurement with a hydrograph established at the watershed outlet showed that the average annual streamflow per 100 mm rainfall from 1983 to 1992 was 0.36 and 1.08 L s-1 km-2 for the agroforestry watershed and the grass watershed, respectively. This showed that the streamflow of the agroforestry watershed was reduced by 67% when compared to that of the grass watershed. The peak average monthly streamflow in the agroforestry watershed was over 5 times lower than that of the grass watershed and lagged by one month. In addition, the peak streamflow during a typical rainfall event of 38.3 mm in August 1986 was 37% lower in the agroforestry watershed than in the grass watershed. Results of the moisture contents of the soil samples from 3 slope locations (upper, middle and lower slopes) indicated that the agroforestry watershed maintained generally higher soil moisture contents than the grass watershed within 0-20 and 20-80 cm soil depths for the upper slope, especially for the period from May through July. For the other (middle and lower) slopes, soil moisture contents within 20-80 cm depth in the agroforestry watershed was generally lower than those in the grass watershed, particularly in September, revealing that water consumption by trees took place mainly below the plow layer. Therefore, agroforestry land use types might offer a complimentary model for tree-annual crop water utilization.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-EW-QN202)the National Natural Science Foundation of China(40975050 and41175072)
文摘A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.
基金jointly supported by jointly supported by the National Key Research and Development Program of China(Grant No.2016YFA0600702)the National Natural Science Foundation of China(Grant No.41625019)
文摘The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are explored based on daily meteorological data contained in the Daily Surface Climate Dataset for China (V3.0) during the period 1960–2012. Results show that winter snowfall in the YHRB exhibits consistent anomalies over the whole region for the interannual variation during 1960–2012. Further analysis suggests that winter snowfall anomalies in the YHRB are closely linked to the anomalous wintertime SCAND activity. When there is more winter snowfall in the YHRB, SCAND is usually in a positive phase, accompanied by a strengthened Urals blocking high and East Asian trough, which is conducive to strengthened cold-air activity, intensified vertical motions, and more water vapor transport in the YHRB. In contrast, less winter snowfall in the YHRB usually happens in the negative phase of SCAND. Our results provide useful information to better understand the relevant mechanism responsible for anomalous winter snowfall in this area.
基金supported by the National Basic Research Program of China (Grant No.2010CB950400)the National Natural Science Foundation of China (Key Project,Grant No.41030961)the Australia-China Bilateral Climate Change Partnerships Program of the Australian Department of Climate Change
文摘The summer rainfall over the middle-lower reaches of the Yangtze River valley (YRSR) has been estimated with a multi-linear regression model using principal atmospheric modes derived from a 500 hPa geopotential height and a 700 hPa zonal vapor flux over the domain of East Asia and the West Pacific.The model was developed using data from 1958 92 and validated with an independent prediction from 1993 2008.The independent prediction was efficient in predicting the YRSR with a correlation coefficient of 0.72 and a relative root mean square error of 18%.The downscaling model was applied to two general circulation models (GCMs) of Flexible Global Ocean-Atmosphere-Land System Model (FGOALS) and Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) to project rainfall for present and future climate under B1 and A1B emission scenarios.The downscaled results pro-vided a closer representation of the observation compared to the raw models in the present climate.In addition,compared to the inconsistent prediction directly from dif-ferent GCMs,the downscaled results provided a consistent projection for this half-century,which indicated a clear increase in the YRSR.Under the B1 emission scenario,the rainfall could increase by an average of 11.9% until 2011 25 and 17.2% until 2036 50 from the current state;under the A1B emission scenario,rainfall could increase by an average of 15.5% until 2011 25 and 25.3% until 2036 50 from the current state.Moreover,the increased rate was faster in the following decade (2011 25) than the latter of this half-century (2036 50) under both emissions.
基金National Key Project for Basic Sciences (973) No. G1999043601
文摘After dividing the source regions of the Yellow River into 38 sub-basins, thepaper made use of the SWAT model to simulate streamflow with validation and calibration of theobserved yearly and monthly runoff data from the Tangnag hydrological station, and simulationresults are satisfactory. Five land-cover scenario models and 24 sets of temperature andprecipitation combinations were established to simulate annual runoff and runoff depth underdifferent scenarios. The simulation shows that with the increasing of vegetation coverage annualrunoff increases and evapotranspiration decreases in the basin. When temperature decreases by 2℃and precipitation increases by 20%, catchment runoff will increase by 39.69%, which is the largestsituation among all scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.41320104007,41775062,41375086,U1502233,and 41775083)
文摘The interannual variability of the east asian upper-tropospheric westerly jet(EAJ) in summer is characterized by the meridional displacement of its axis, or a seesaw pattern of zonal wind anomalies between the northern and southern flanks of the EAJ. This study reveals a close relationship between the surface air temperature in the russian far east and the northern flank of the EAJ. Related to a warmer surface in the russian far east, the westerly decelerates in the northern flank of the EAJ. The relationship can be explained by a positive feedback mechanism between the surface air temperature in the russian far east and the overhead circulation: the anticyclonic circulation anomaly related to a weakened westerly in the northern flank of the EAJ induces surface warming in the russian far east and the warmer surface can in turn act as a heat source and induces a local anticyclonic circulation anomaly in the upper troposphere, therefore decelerating the westerly in the northern flank of the EAJ. The result implies that a better description of the summer surface condition in the russian far east may benefit seasonal forecasts of the EAJ and, subsequently, east asian summer climate.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.40176003 and 40136010)Anna Zaklikowski was supported by the funding of the U.S.National Science Foundation
文摘The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countercurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC relate to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Nio-Southern Oscillation (ENSO) suggests that before El Nio (La Nia) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Nio (La Nia) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.
基金supported by Yongqi Gao's 100-Talent Program financed by the Chinese Academy of Sciences (CAS)the CAS Project "IAP OGCM Improvement and Coupling to AGCM and Ocean Carbon Cycle" (KZCX2-YW-218)the EU Project Dragoness (SSA5-CT-2006-030902)
文摘The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as well as the Ocean General Circulation Model (OGCM). We investigated the correspondence between the SPG and the AMOC in a coupled climate model. Our results confirm that the SPG can be used as an early indicator for the AMOC in the subtropical North Atlantic. Changes in the SPG are closely related to variations in the air-sea heat exchange in the Labrador Sea, and variations in deep water formation and southward dense water transport with the deep western boundary current (DWBC) in the North Atlantic.
基金Under the auspices of National Natural Science Foundation of China(No.41171403,41301586)China Postdoctoral Science Foundation(No.2013M540599,2014T70731)Program for New Century Excellent Talents in University(No.NCET-08-0057)
文摘Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.
基金Special Fund Project for Social Benefit Research Study on the Monitoring and Predicting Techniques of Desasters by landding typhoons in China (2002DCA20026-01) Knowledge Innovation Project of The Chinese Academy of Sciences (ZKCXZ-SW-210)
文摘Based on the QuikSCAT data, the features of surface wind distribution of the typhoon Vongfong landfall process are analyzed. We have also studied the variance spectral configuration of the surface wind field using DCT (Discrete Cosine Transform). The conclusions are as follows: The near-surface wind field is highly asymmetric; the variance components of asymmetric surface wind field depend mainly on the airflow direction of wavenumber 1 and 2. When the typhoon moves west, there are two wave spectral centers lining up in the zonal direction, mainly the airflow from zonal wavenumber 2 and meridional wavenumber 2; when it moves north, there are two wave spectral centers in a meridional array, mainly the airflow from zonal wavenumber 1 and meridional wavenumber 2. The airflow for wavenumber 1 mainly contributes to the variance of the tangential wind while that for wavenumber 2 to the variance of the radial wind. The asymmetrical distribution changes with the large-scale environment and self-rotating circulation around the typhoon. When it approached land, the associated gale appears in front portion in the advancing direction of the storm. It is in effect similar to the model of Chen Lian-shou for typhoon-related gales NNW on the left front portion and SE on the right front portion.