Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. T...Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.展开更多
According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D simila...According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.展开更多
As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation...As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.展开更多
Three groups of experiments on brittle-plastic transition and instability modes of granite were performed in a triaxial vessel with solid pressure medium at high temperature and high pressure. The results of experimen...Three groups of experiments on brittle-plastic transition and instability modes of granite were performed in a triaxial vessel with solid pressure medium at high temperature and high pressure. The results of experiments show that brittle faulting is the major failure mode at temperature <300℃, but crystal-plastic deformation is dominate at temperature >800℃, and there is a transition with increasing temperature from semi-brittle faulting to cataclastic flow and semi-brittle flow at temperatures of 300~800℃. So, temperature is the most influential factor in brittle-plastic transition of granite and confining pressure is the second factor. The results also show that progressive failure of granite occurs at lower pressure or high temperature where there is crystal plasticity, and sudden instability occurs at room temperature and high pressure (>300MPa) or high temperature and great pressure(550℃600MPa ~650℃700MPa), and a broad regime of quasi-sudden instability exists between the T-P condition of progressive failure and sudden instability. So, instability modes of granite depend simultaneously on the pressure and temperature.展开更多
Why do some room and pillar retreat panels encounter abnormal conditions? What factors deserve the most consideration during the planning and execution phases of mining and what can be done to mitigate those abnormal...Why do some room and pillar retreat panels encounter abnormal conditions? What factors deserve the most consideration during the planning and execution phases of mining and what can be done to mitigate those abnormal conditions when they are encountered7 To help answer these questions, and to determine some of the relevant factors influencing the conditions of room and pillar (R & P) retreat min- ing entries, four consecutive R & P retreat panels were evaluated. This evaluation was intended to rein- force the influence of topographic changes, depth of cover, multiple-seam interactions, geological conditions, and mining geometry. This paper details observations were made in four consecutive R & P retreat panels and the data were collected from an instrumentation site during retreat mining. The pri- mary focus was on the differences observed among the four panels and within the panels themselves. The instrumentation study was initially planned to evaluate the interactions between primary and secondary support, but produced rather interesting results relating to the loading encountered under the current mining conditions. In addition to the obse^ation and |ll^trumentation, numerical modeling was per- formed to evaluate the stress condi~!ons. Both the LaModel 3.0 and Rocscience Phase 2 programs were used to evaluate these four panels, The results of both models indicated a drastic reduction in the vertical stresses experienced in these panels due to the full extraction mining in overlying seams when compared to the full overburden load. Both models showed a higher level of stress associated with the outside entries of the panels. These results agree quite well with the observations and instrumentation studies performed at the mine. These efforts provided two overarching conclusions concerning R & P retreat mine planning and execution. The first was that there are four areas that should not be overlooked during R & P retreat mining: topographic relief, multiple^seaPa stress relief, stress concentrations near the gob edge, and geologic changes in the immediate roof. The second is that in order to successfully retreat an R & P panel, a three-phased approach to the design and analysis of the panel should be conducted: the planning phase, evaluation phase, and monitoring phase.展开更多
Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformati...Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformation information caused by the mining subsidence in a coalmine for example, a new GIS-Excel modeling method is proposed to build geologic strata within the simulation range combined with the coal-seam dip angle of the underground mining working-planes. First of all, the coal-seam model of the numerical computing is built by using the geographic information system (GIS) according to the stripe-through principle and the calculating formula on the size of the model blocks in the paper defined, then the FLAC3D numerical computing model of all geologic strata with- in the simulation range is also built based on the calculating formula of thickness of each stratum and the Excel fast computing advantages. The GIS-Excel method is good at the higher modeling accuracy, seldom making mistakes and consuming less time. The reliability and validity of the method is veri- fied well by its practical applications in the coalmine area.展开更多
This paper presents a study on the gravityinduced rock slope deformation observed along the Nujiang River in China. We performed a comprehensive field investigation and analysis to identify the deformation pattern of ...This paper presents a study on the gravityinduced rock slope deformation observed along the Nujiang River in China. We performed a comprehensive field investigation and analysis to identify the deformation pattern of the slope and its triggering factors. Moreover, a geologicalevolutionary model was developed, and it considers the effects of river incision and rock mass degradation caused by weathering and simulates the mechanisms underlying the initiation and progression of the slope deformation. The results support the proposed failure mechanism in which fractures within the slope are induced by rock mass degradation caused by weathering. Importantly, the modeling reveals that compressional deformation at the toe of the slope results in a tensile failure in the upper portion of the slope, demonstrating that the rock mass in the slope toe is the key factor inducing slope deformation. This analysis of slope deformation and its spatial and temporal correlations with rock weathering and river incision reveal the main triggering factors that control the evolution of the studied slope and provide insights into the deformation process.展开更多
Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory(TV...Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory(TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.展开更多
Within Karakoram Himalaya, Hunza River Basin(study area) is unique for a number of reasons: 1) potential impacts of highly concentrated highpitched mountains and glacial ice; 2) the glaciated portions have higher mean...Within Karakoram Himalaya, Hunza River Basin(study area) is unique for a number of reasons: 1) potential impacts of highly concentrated highpitched mountains and glacial ice; 2) the glaciated portions have higher mean altitude as compared to other glaciated landscapes in the Karakoram; 3) this basin occupies varieties of both clean and debriscovered glaciers and/or ice. Therefore, it is imperative to understand the stability of topographic surface and potential implications of fluctuating glacial-ice causing variations in the movement of material from higher to lower elevations. This paper advocates landscape-level hypsometric investigations of glaciated landscape lies between 2280–7850 m elevation above sea level and non-glaciated landscape between 1461–7570 m. An attempt is made to understand intermediate elevations, which disguise the characteristics of glaciated hypsometries that are highly correlated with the Equilibrium Line Altitude(ELA). However, due to data scarcity for high altitude regions especially above 5000 m elevation, literature values for climatic conditions are used to create a relationship between hypsometry and variations in climate and ELA. The largest glaciated area(29.22%) between 5047 to 5555 m lies in the vertical regime of direct snow-accumulation zone and in the horizontal regime of net-accumulation zone(low velocity, net freezing, and no-sliding). In both landscapes, the hypsometric curves are ‘slow beginning' followed by ‘steep progress' and finally reaching a ‘plateau', reflecting the rapid altitudinal changes and the dominance of fluvial transport resulting in the denudation of land-dwelling and the transport of rock/debris from higher to lower altitudes. Reported slight differences in the average normalized bin altitudes against the cumulative normalized area between glaciated and non-glaciated landscapes are an indicator of slightly different land-forms and landform changes.展开更多
Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of ...Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.展开更多
In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed r...In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale展开更多
The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure...The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure characteristics were characterized with electron back-scattering diffraction(EBSD)orientation imaging microscopy and metallography.The results indicate that the intensity distribution of basal{0001}<1010>texture on the cross-section of the extruded perform is uniform and parallel to the extrusion direction.Subjected to pressing in extrusion direction,deformation shear stress leads to grain rotation and basal texture {0001}<1010>deviation from the extrusion direction,spreading in the direction perpendicular to pressing direction.The texture intensity increases with the press deformation rate and reaches its peak value at 50%,which is considerably lower than the value reached in extrusion deformation.Then,the texture intensity decreases with the press deformation rate reversely.展开更多
In the analysis of some in-seam slip fold structures in the area of Xuzhou and Huaibei Districta it is noted that there exist some in-seam roof and footwall rock layers extremely incompatible to the existence of coal ...In the analysis of some in-seam slip fold structures in the area of Xuzhou and Huaibei Districta it is noted that there exist some in-seam roof and footwall rock layers extremely incompatible to the existence of coal seams. Some of them are tbe slip fold structures that are wedged into coal seam by folding, but all of them are passively generated by in-seam shearing forces. In this paper, a discussion is put forward of the damage to coal seams by slip folds and the coal mining significance resulted from the study of slip fold structures.展开更多
Based on data from an across-fault survey along the Sichuan-Yunnan rhombic block boundaries, the recent deformation characteristics on each fault have been analyzed. It was found that the rate of crustal deformation i...Based on data from an across-fault survey along the Sichuan-Yunnan rhombic block boundaries, the recent deformation characteristics on each fault have been analyzed. It was found that the rate of crustal deformation is slowing down along the northern segment and increasing along the southern segment. Each fault has different features of deformation. The horizontal deformation is mainly characterized by left-lateral strike-slip. The rate of vertical deformation is less than that of the horizontal deformation. The faults have the feature of upper wall uplifting alternated with descending. The anomaly changes of crustal deformation at some sites are closely related to the seismicities near the sites.展开更多
Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent con...Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.展开更多
基金Project supported by the National Science and Technology Project of Tenth Five Years (No.2001BA605A06A)Science and Tech-nology Cooperation Program of SINOPEC (No.FYWX04-06),China
文摘Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.
基金Acknowledgments This work is supported by the National Nature Science Foundation of China (51374011).
文摘According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.
基金Financial supports for this work, are provided by the National Natural Science Foundation of China (NSFC) & Shenhua Group Corporation Limited key support project of the coal joint fund (U1361203) and NSFC under Grant No. 41501562. Thanks are also due to some participants for rendering assistant cooperation during studies.
文摘As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.
文摘Three groups of experiments on brittle-plastic transition and instability modes of granite were performed in a triaxial vessel with solid pressure medium at high temperature and high pressure. The results of experiments show that brittle faulting is the major failure mode at temperature <300℃, but crystal-plastic deformation is dominate at temperature >800℃, and there is a transition with increasing temperature from semi-brittle faulting to cataclastic flow and semi-brittle flow at temperatures of 300~800℃. So, temperature is the most influential factor in brittle-plastic transition of granite and confining pressure is the second factor. The results also show that progressive failure of granite occurs at lower pressure or high temperature where there is crystal plasticity, and sudden instability occurs at room temperature and high pressure (>300MPa) or high temperature and great pressure(550℃600MPa ~650℃700MPa), and a broad regime of quasi-sudden instability exists between the T-P condition of progressive failure and sudden instability. So, instability modes of granite depend simultaneously on the pressure and temperature.
文摘Why do some room and pillar retreat panels encounter abnormal conditions? What factors deserve the most consideration during the planning and execution phases of mining and what can be done to mitigate those abnormal conditions when they are encountered7 To help answer these questions, and to determine some of the relevant factors influencing the conditions of room and pillar (R & P) retreat min- ing entries, four consecutive R & P retreat panels were evaluated. This evaluation was intended to rein- force the influence of topographic changes, depth of cover, multiple-seam interactions, geological conditions, and mining geometry. This paper details observations were made in four consecutive R & P retreat panels and the data were collected from an instrumentation site during retreat mining. The pri- mary focus was on the differences observed among the four panels and within the panels themselves. The instrumentation study was initially planned to evaluate the interactions between primary and secondary support, but produced rather interesting results relating to the loading encountered under the current mining conditions. In addition to the obse^ation and |ll^trumentation, numerical modeling was per- formed to evaluate the stress condi~!ons. Both the LaModel 3.0 and Rocscience Phase 2 programs were used to evaluate these four panels, The results of both models indicated a drastic reduction in the vertical stresses experienced in these panels due to the full extraction mining in overlying seams when compared to the full overburden load. Both models showed a higher level of stress associated with the outside entries of the panels. These results agree quite well with the observations and instrumentation studies performed at the mine. These efforts provided two overarching conclusions concerning R & P retreat mine planning and execution. The first was that there are four areas that should not be overlooked during R & P retreat mining: topographic relief, multiple^seaPa stress relief, stress concentrations near the gob edge, and geologic changes in the immediate roof. The second is that in order to successfully retreat an R & P panel, a three-phased approach to the design and analysis of the panel should be conducted: the planning phase, evaluation phase, and monitoring phase.
基金Supported by the National Natural Science Foundation of China(No.41271436)
文摘Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformation information caused by the mining subsidence in a coalmine for example, a new GIS-Excel modeling method is proposed to build geologic strata within the simulation range combined with the coal-seam dip angle of the underground mining working-planes. First of all, the coal-seam model of the numerical computing is built by using the geographic information system (GIS) according to the stripe-through principle and the calculating formula on the size of the model blocks in the paper defined, then the FLAC3D numerical computing model of all geologic strata with- in the simulation range is also built based on the calculating formula of thickness of each stratum and the Excel fast computing advantages. The GIS-Excel method is good at the higher modeling accuracy, seldom making mistakes and consuming less time. The reliability and validity of the method is veri- fied well by its practical applications in the coalmine area.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 41521002,41572283 and 41130745)supported by the Funding of Science and Technology Office of Sichuan Province (Grant Nos. 2015JQ0020)
文摘This paper presents a study on the gravityinduced rock slope deformation observed along the Nujiang River in China. We performed a comprehensive field investigation and analysis to identify the deformation pattern of the slope and its triggering factors. Moreover, a geologicalevolutionary model was developed, and it considers the effects of river incision and rock mass degradation caused by weathering and simulates the mechanisms underlying the initiation and progression of the slope deformation. The results support the proposed failure mechanism in which fractures within the slope are induced by rock mass degradation caused by weathering. Importantly, the modeling reveals that compressional deformation at the toe of the slope results in a tensile failure in the upper portion of the slope, demonstrating that the rock mass in the slope toe is the key factor inducing slope deformation. This analysis of slope deformation and its spatial and temporal correlations with rock weathering and river incision reveal the main triggering factors that control the evolution of the studied slope and provide insights into the deformation process.
文摘Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory(TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.
文摘Within Karakoram Himalaya, Hunza River Basin(study area) is unique for a number of reasons: 1) potential impacts of highly concentrated highpitched mountains and glacial ice; 2) the glaciated portions have higher mean altitude as compared to other glaciated landscapes in the Karakoram; 3) this basin occupies varieties of both clean and debriscovered glaciers and/or ice. Therefore, it is imperative to understand the stability of topographic surface and potential implications of fluctuating glacial-ice causing variations in the movement of material from higher to lower elevations. This paper advocates landscape-level hypsometric investigations of glaciated landscape lies between 2280–7850 m elevation above sea level and non-glaciated landscape between 1461–7570 m. An attempt is made to understand intermediate elevations, which disguise the characteristics of glaciated hypsometries that are highly correlated with the Equilibrium Line Altitude(ELA). However, due to data scarcity for high altitude regions especially above 5000 m elevation, literature values for climatic conditions are used to create a relationship between hypsometry and variations in climate and ELA. The largest glaciated area(29.22%) between 5047 to 5555 m lies in the vertical regime of direct snow-accumulation zone and in the horizontal regime of net-accumulation zone(low velocity, net freezing, and no-sliding). In both landscapes, the hypsometric curves are ‘slow beginning' followed by ‘steep progress' and finally reaching a ‘plateau', reflecting the rapid altitudinal changes and the dominance of fluvial transport resulting in the denudation of land-dwelling and the transport of rock/debris from higher to lower altitudes. Reported slight differences in the average normalized bin altitudes against the cumulative normalized area between glaciated and non-glaciated landscapes are an indicator of slightly different land-forms and landform changes.
文摘Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51174195)the Graduate Student Scientific Research Innovation Project of the Jiangsu Province Ordinary University (No. CXZZ12_0954)the Research Foundation of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X04)
文摘In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale
基金Project(CSTC2007AA4008)supported by the Scientific and Technological Project in Chongqing of China
文摘The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure characteristics were characterized with electron back-scattering diffraction(EBSD)orientation imaging microscopy and metallography.The results indicate that the intensity distribution of basal{0001}<1010>texture on the cross-section of the extruded perform is uniform and parallel to the extrusion direction.Subjected to pressing in extrusion direction,deformation shear stress leads to grain rotation and basal texture {0001}<1010>deviation from the extrusion direction,spreading in the direction perpendicular to pressing direction.The texture intensity increases with the press deformation rate and reaches its peak value at 50%,which is considerably lower than the value reached in extrusion deformation.Then,the texture intensity decreases with the press deformation rate reversely.
文摘In the analysis of some in-seam slip fold structures in the area of Xuzhou and Huaibei Districta it is noted that there exist some in-seam roof and footwall rock layers extremely incompatible to the existence of coal seams. Some of them are tbe slip fold structures that are wedged into coal seam by folding, but all of them are passively generated by in-seam shearing forces. In this paper, a discussion is put forward of the damage to coal seams by slip folds and the coal mining significance resulted from the study of slip fold structures.
文摘Based on data from an across-fault survey along the Sichuan-Yunnan rhombic block boundaries, the recent deformation characteristics on each fault have been analyzed. It was found that the rate of crustal deformation is slowing down along the northern segment and increasing along the southern segment. Each fault has different features of deformation. The horizontal deformation is mainly characterized by left-lateral strike-slip. The rate of vertical deformation is less than that of the horizontal deformation. The faults have the feature of upper wall uplifting alternated with descending. The anomaly changes of crustal deformation at some sites are closely related to the seismicities near the sites.
基金partially supported by the National Natural Science Foundation of China(91955210,41625016,and 41888101)。
文摘Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.