Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections ...Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.展开更多
The signal-to-noise ratio (SNR) of seismic reflection data in many areas is rather poor and conventional two-dimensional filters designed to suppress noise with different moveout from the signal tend to generate art...The signal-to-noise ratio (SNR) of seismic reflection data in many areas is rather poor and conventional two-dimensional filters designed to suppress noise with different moveout from the signal tend to generate artifacts. We have extended a method of multichannel filtering, based on the hypothesis that signals on adjacent channels are similar, for enhancing the SNR on stacked sections. Using only the mid-range frequencies where the SNR is highest, the event trend is found for overlapping windows on the section and the average signal vector is calculated. Then the data from the full bandwidth section are projected onto the spatially varying unit similarity vectors and the results are merged for the overlapping windows. Application of the method to synthetic data containing steeply dipping events and to a stacked section for a marine 2D line has produced good results. The modifications we have introduced carry a small overhead in computing time but they should enable the method to be used effectively even on sections containing steep dips.展开更多
The aim of this work is to establish volcanic seismic reflection configuration models in the rift basins of Northeast China from a new perspective,the volcanostratigraphic structure.Accordingly,the volcanostratigraphi...The aim of this work is to establish volcanic seismic reflection configuration models in the rift basins of Northeast China from a new perspective,the volcanostratigraphic structure.Accordingly,the volcanostratigraphic structure of an outcrop near the Hailaier Rift Basin was analyzed to understand the characteristics and causal factors of physical boundaries.Further,3D seismic reflection data and analysis of deep boreholes in the Songliao Rift Basin were used to establish the relationship between volcanic seismic reflection configurations and volcanostratigraphic structures.These studies suggested that in volcanic successions,physical boundaries coincide with volcanic boundaries,and their distributions are controlled by the stacking patterns of volcanic units.Therefore,volcanic seismic reflection configurations can be interpreted in terms of the stacking patterns of volcanic units.These are also referred to as general bedding patterns in volcanostratigraphy.Furthermore,four typical seismic reflection configurations were identified,namely,the chaotic,the parallel continuous,the hummocky,the multi-mound superimposed and the composite.The corresponding interpretation models comprised single massive unit,vertical,intersectional,lateral multi-mound,and composite stacking patterns.The hummocky and composite reflection configurations with intersectional and composite stacking patterns are the most favorable for the exploration of volcanic reservoirs in rift basins.展开更多
Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this pro...Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this problem appears to have been overcome partly by using long offset seismic data. However near offset data are yet to be fully utilised due to the complex waveform caused by the surface as well as internal heterogeneity of the basalts. The near normal incidence data, which influence the sub-basalt imaging, are highly useful to understand the internal structure within a basalt layer. The use of converted waves for such targets has been proposed as an alternative in a rather homogeneous basalt layer. With a few synthetic modelling exercises here we highlight the practical difficulties in dealing with more realistic and heterogeneous basalt flow. Full waveform seismograms are computed to understand the effects of intra-trappean sediments on the seismic data. A case study from the Deccan Traps of India is presented in this paper. First, we discuss the effects of intercalated sediments on the overall seismic image. Later, the sonic log data from the field are used to compute the full wave-field response using the reflectivity method and compared with the field data. The feasibility of using mode converted waves (P to S and vice-versa at the top and bottom basalt interfaces) for sub-basalt imaging in Kutch region is discussed through a series of velocity-depth profiles. By comparing with the field data we demonstrate that the effects of multiple thin layering within the basalt can strongly deteriorate the image we seek to interpret and exploit.展开更多
文摘Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.
文摘The signal-to-noise ratio (SNR) of seismic reflection data in many areas is rather poor and conventional two-dimensional filters designed to suppress noise with different moveout from the signal tend to generate artifacts. We have extended a method of multichannel filtering, based on the hypothesis that signals on adjacent channels are similar, for enhancing the SNR on stacked sections. Using only the mid-range frequencies where the SNR is highest, the event trend is found for overlapping windows on the section and the average signal vector is calculated. Then the data from the full bandwidth section are projected onto the spatially varying unit similarity vectors and the results are merged for the overlapping windows. Application of the method to synthetic data containing steeply dipping events and to a stacked section for a marine 2D line has produced good results. The modifications we have introduced carry a small overhead in computing time but they should enable the method to be used effectively even on sections containing steep dips.
基金Projects(41472304,41430322) supported by the National Natural Science Foundation of ChinaProject(2012CB822002) supported by National Major State Basic Research Program of China
文摘The aim of this work is to establish volcanic seismic reflection configuration models in the rift basins of Northeast China from a new perspective,the volcanostratigraphic structure.Accordingly,the volcanostratigraphic structure of an outcrop near the Hailaier Rift Basin was analyzed to understand the characteristics and causal factors of physical boundaries.Further,3D seismic reflection data and analysis of deep boreholes in the Songliao Rift Basin were used to establish the relationship between volcanic seismic reflection configurations and volcanostratigraphic structures.These studies suggested that in volcanic successions,physical boundaries coincide with volcanic boundaries,and their distributions are controlled by the stacking patterns of volcanic units.Therefore,volcanic seismic reflection configurations can be interpreted in terms of the stacking patterns of volcanic units.These are also referred to as general bedding patterns in volcanostratigraphy.Furthermore,four typical seismic reflection configurations were identified,namely,the chaotic,the parallel continuous,the hummocky,the multi-mound superimposed and the composite.The corresponding interpretation models comprised single massive unit,vertical,intersectional,lateral multi-mound,and composite stacking patterns.The hummocky and composite reflection configurations with intersectional and composite stacking patterns are the most favorable for the exploration of volcanic reservoirs in rift basins.
文摘Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this problem appears to have been overcome partly by using long offset seismic data. However near offset data are yet to be fully utilised due to the complex waveform caused by the surface as well as internal heterogeneity of the basalts. The near normal incidence data, which influence the sub-basalt imaging, are highly useful to understand the internal structure within a basalt layer. The use of converted waves for such targets has been proposed as an alternative in a rather homogeneous basalt layer. With a few synthetic modelling exercises here we highlight the practical difficulties in dealing with more realistic and heterogeneous basalt flow. Full waveform seismograms are computed to understand the effects of intra-trappean sediments on the seismic data. A case study from the Deccan Traps of India is presented in this paper. First, we discuss the effects of intercalated sediments on the overall seismic image. Later, the sonic log data from the field are used to compute the full wave-field response using the reflectivity method and compared with the field data. The feasibility of using mode converted waves (P to S and vice-versa at the top and bottom basalt interfaces) for sub-basalt imaging in Kutch region is discussed through a series of velocity-depth profiles. By comparing with the field data we demonstrate that the effects of multiple thin layering within the basalt can strongly deteriorate the image we seek to interpret and exploit.