Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in th...Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.展开更多
With the objective of establishing the necessary conditions for 3D seismic data from mountainous areas in western China, we compared the application results of wave impedance technology in the lithology and exploratio...With the objective of establishing the necessary conditions for 3D seismic data from mountainous areas in western China, we compared the application results of wave impedance technology in the lithology and exploration of coal fields. First, we introduce principles and features of three kinds of inversion methods. i.e., Model-Based Inversion, Constrained Sparse Spike Inversion (CSSI) and Geology-Seismic Feature Inversion. Secondly, these inversion methods are contrasted in their application to 3D seismic data from some coalfields in western China. The main information provided by the research includes: improving the vertical resolution of coal deposit strata, inferring lateral variation of the lithology and predicting coal seams and their roof lithology. Finally, the comparison between the three methods shows that the model-based inversion has the higher resolution, while CSSI inversion has better waveform continuity. The geology-seismic feature inversion requires information from a large number of wells and many types of logging curves of good quality. All three methods can meet the requirements of seismic exploration for lithological exploration in coal fields.展开更多
The optimization inversion method based on derivatives is an important inversion technique in seismic data processing,where the key problem is how to compute the Jacobian matrix.The computation precision of the Jacobi...The optimization inversion method based on derivatives is an important inversion technique in seismic data processing,where the key problem is how to compute the Jacobian matrix.The computation precision of the Jacobian matrix directly influences the success of the optimization inversion method.Currently,all AVO(Amplitude Versus Offset) inversion techniques are based on approximate expressions of Zoeppritz equations to obtain derivatives.As a result,the computation precision and application range of these AVO inversions are restricted undesirably.In order to improve the computation precision and to extend the application range of AVO inversions,the partial derivative equation(Jacobian matrix equation(JME) for the P-and S-wave velocities inversion) is established with Zoeppritz equations,and the derivatives of each matrix entry with respect to Pand S-wave velocities are derived.By solving the JME,we obtain the partial derivatives of the seismic wave reflection coefficients(RCs) with respect to P-and S-wave velocities,respectively,which are then used to invert for P-and S-wave velocities.To better understand the behavior of the new method,we plot partial derivatives of the seismic wave reflection coefficients,analyze the characteristics of these curves,and present new understandings for the derivatives acquired from in-depth analysis.Because only a linear system of equations is solved in our method,the computation of Jacobian matrix is not only of high precision but also is fast and efficient.Finally,the theoretical foundation is established so that we can further study inversion problems involving layered structures(including those with large incident angle) and can further improve computational speed and precision.展开更多
基金Projects 40574057 and 40874054 supported by the National Natural Science Foundation of ChinaProjects 2007CB209400 by the National Basic Research Program of ChinaFoundation of China University of Mining and Technology (OF4471)
文摘Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.
基金part of an ongoing project of the National Important Industry Technological Development Project (High Precision 3D Seismic Technology of Coal Resources of Western China)the financial support from the National Basic Research Program of China (No.2009CB 219603)the National Key Scientific and Technological Project of China (No.2008ZX05035-005-003HZ)
文摘With the objective of establishing the necessary conditions for 3D seismic data from mountainous areas in western China, we compared the application results of wave impedance technology in the lithology and exploration of coal fields. First, we introduce principles and features of three kinds of inversion methods. i.e., Model-Based Inversion, Constrained Sparse Spike Inversion (CSSI) and Geology-Seismic Feature Inversion. Secondly, these inversion methods are contrasted in their application to 3D seismic data from some coalfields in western China. The main information provided by the research includes: improving the vertical resolution of coal deposit strata, inferring lateral variation of the lithology and predicting coal seams and their roof lithology. Finally, the comparison between the three methods shows that the model-based inversion has the higher resolution, while CSSI inversion has better waveform continuity. The geology-seismic feature inversion requires information from a large number of wells and many types of logging curves of good quality. All three methods can meet the requirements of seismic exploration for lithological exploration in coal fields.
基金supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning (Grant No. PHR(20117145))National Natural Science Foundation of China (Grant No. 10705049)
文摘The optimization inversion method based on derivatives is an important inversion technique in seismic data processing,where the key problem is how to compute the Jacobian matrix.The computation precision of the Jacobian matrix directly influences the success of the optimization inversion method.Currently,all AVO(Amplitude Versus Offset) inversion techniques are based on approximate expressions of Zoeppritz equations to obtain derivatives.As a result,the computation precision and application range of these AVO inversions are restricted undesirably.In order to improve the computation precision and to extend the application range of AVO inversions,the partial derivative equation(Jacobian matrix equation(JME) for the P-and S-wave velocities inversion) is established with Zoeppritz equations,and the derivatives of each matrix entry with respect to Pand S-wave velocities are derived.By solving the JME,we obtain the partial derivatives of the seismic wave reflection coefficients(RCs) with respect to P-and S-wave velocities,respectively,which are then used to invert for P-and S-wave velocities.To better understand the behavior of the new method,we plot partial derivatives of the seismic wave reflection coefficients,analyze the characteristics of these curves,and present new understandings for the derivatives acquired from in-depth analysis.Because only a linear system of equations is solved in our method,the computation of Jacobian matrix is not only of high precision but also is fast and efficient.Finally,the theoretical foundation is established so that we can further study inversion problems involving layered structures(including those with large incident angle) and can further improve computational speed and precision.