The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - ...The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - barrier lake - bursts flood disaster chain. The number and the area of landslides in a wide region can be easily obtained by remote sensing technique, while the volume is relatively difficult to obtain because it requires some detailed geometric information of slope failure surface and sub-surface. Different empirical models for estimating landslide volume were discussed based on the data of 107 landslides in the earthquake-stricken area. The volume data of these landslides were collected by field survey. Their areas were obtained by interpreting remote sensing images while their apparent friction coefficients and height were extracted from the images unifying DEM (digital elevation model). By analyzing the relationships between the volume and the area, apparent friction coefficients, and the height, two models were established, one for the adaptation of a magnitude scale landslide events in a wide range of region, another for the adaptation in a small scope. The correlation coefficients (R2) are 0.7977 and 0.8913, respectively. The results estimated by the two models agree well with the measurement data.展开更多
基金supported financially by the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q03-5)the National Science and Technology Support Plan Project (2009BAK56B05)the National Natural Science Foundation of China (40802072)
文摘The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - barrier lake - bursts flood disaster chain. The number and the area of landslides in a wide region can be easily obtained by remote sensing technique, while the volume is relatively difficult to obtain because it requires some detailed geometric information of slope failure surface and sub-surface. Different empirical models for estimating landslide volume were discussed based on the data of 107 landslides in the earthquake-stricken area. The volume data of these landslides were collected by field survey. Their areas were obtained by interpreting remote sensing images while their apparent friction coefficients and height were extracted from the images unifying DEM (digital elevation model). By analyzing the relationships between the volume and the area, apparent friction coefficients, and the height, two models were established, one for the adaptation of a magnitude scale landslide events in a wide range of region, another for the adaptation in a small scope. The correlation coefficients (R2) are 0.7977 and 0.8913, respectively. The results estimated by the two models agree well with the measurement data.