据新疆地震台网测定,2019年10月27日13时29分,新疆阿克苏地区乌什县发生MS5.0地震(以下简称乌什MS5.0地震),震中为41.21°N,78.82°E,震源深度11 km,当天18时52分再次发生MS4.5地震,地震类型为多震型。地震震源机制的确定,对于...据新疆地震台网测定,2019年10月27日13时29分,新疆阿克苏地区乌什县发生MS5.0地震(以下简称乌什MS5.0地震),震中为41.21°N,78.82°E,震源深度11 km,当天18时52分再次发生MS4.5地震,地震类型为多震型。地震震源机制的确定,对于研究地震的发震机制,孕震机理以及震后应力的分布,具有非常重要的意义[1-5]。早期的地震矩张量大都是由P波初动符号确定,如高国英等(1998)采用P波初动的方法计算1997年伽师强震群6级以上地震的震源机制解,确定了伽师震群的破裂面[6]。利用宽频带地震波形记录来反演地震矩张量可以避开P波初动求解震源机制的苛刻条件,可以得到整个地震破裂过程的信息。本文中利用目前较流行的CAP(Cut and Paste)方法快速计算了乌什MS5.0和MS4.5地震震源机制解,对于判定未来地震活动趋势具有重要意义,为震源区及其邻区的构造应力场积累了基础资料。展开更多
In recent years, tsunami happens frequently in the world, which caused huge losses. In order to find objective features of tsunamigenic source, global CMT data from 1976 to 2010 and tsunami data from NOAA are analyzed...In recent years, tsunami happens frequently in the world, which caused huge losses. In order to find objective features of tsunamigenic source, global CMT data from 1976 to 2010 and tsunami data from NOAA are analyzed statistically, tsunami is compared with bigger tsunamis. At last, some features of seismic tsunami sources are concluded.展开更多
The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and...The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region.展开更多
In this paper, using focal mechanism solutions of moderate-strong earthquakes in Yunnan and its adjacent areas, and based on the statistical analysis of the parameters of focal mechanism solutions, we discussed in det...In this paper, using focal mechanism solutions of moderate-strong earthquakes in Yunnan and its adjacent areas, and based on the statistical analysis of the parameters of focal mechanism solutions, we discussed in detail the earthquake fault types and the characteristics of the modern tectonic stress field in the Yunnan region. The results show that most moderate-strong earthquakes occurring in the Yunnan region are of the strike-slip type, amounting to 80% of the total. Normal faulting and normal with strike-slip and reverse and reverse with strike-slip earthquakes is almost equivalent in proportion, about 8% each. The tectonic stress field of the Yunnan region is near-horizontal, and the dips of earthquake fault planes are large. There are three main dynamic sources acting on the Yunnan region: one is the NE, NNE and NNW-directed acting force from Myanmar, Laos and Vietnam; the second is the SE-SSE directed force from the Sichuan and Sichuan-Yunnan rhombus block and the third is the NW-NNW directed force from the South China block. These three acting forces have controlled the faulting behavior of the main faults and the characteristics of strong earthquake activity of Yunnan and its adjacent regions.展开更多
In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster&...In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster's test,then quantitatively analyzed the correlation between strong earthquakes in the Chinese mainland and tidal Coulomb failure stress.Research shows that among 57 strong earthquakes with focal mechanism solutions,over 71.9%took place within the tidal loading phase,with the p-value of 3.83%,indicating that strong earthquakes with M S≥7.0 in Chinese mainland have a certain correlation with lunisolar tidal Coulomb failure stress.In the active period,the p-value is4.56%,75.5%of earthquakes occurred in the tidal loading phase zone,and 50%of earthquakes occurred in the quiescence period,indicating that strong earthquakes in the active period were obviously triggered with the tidal Coulomb failure stress loading.展开更多
1,209 earthquakes occurred in Xianyou,Fujian from August 4,2010 to October 4,2013.The largest earthquake was M L5. 0 on September 4,2013. In order to study the Xianyou earthquake sequence and understand the causative ...1,209 earthquakes occurred in Xianyou,Fujian from August 4,2010 to October 4,2013.The largest earthquake was M L5. 0 on September 4,2013. In order to study the Xianyou earthquake sequence and understand the causative structure and stress field of Xianyou,the focal mechanism solutions of six earthquakes( M L> 3. 5) in the Xianyou earthquake sequence are calculated using the broadband digital data of the Fujian Seismic Network with the seismic moment tensor inverse method. The results show that the focal faults of the six earthquakes are similar,which are all strike-slip faults striking to the northwest with high dip angles. The direction of the principal compressive stress axes is near SN,which is different from the stress field of Fujian region. The Xianyou earthquake sequence may have been induced by the stress adjustment after the impoundment of Jinzhong reservoir.展开更多
A M_L3.8 earthquake occurred on February 23,2014 in Rongchang County,which is located at the southern edge of the Sichuan Basin in the border area between Sichuan and Chongqing. This paper presents results of focal me...A M_L3.8 earthquake occurred on February 23,2014 in Rongchang County,which is located at the southern edge of the Sichuan Basin in the border area between Sichuan and Chongqing. This paper presents results of focal mechanism solution of this earthquake using the CAP( cut and paste) method based on broadband seismograms recorded by regional seismic stations. Our results show that the moment magnitude is M_W3. 09 and focal depth is 3km. The hypocenter of this earthquake is located close to a buried fault in the Luoguangshan anticline. Oil prospecting and deep drilling data indicate that this buried fault is a thrust fault,striking SW230°,dipping NW45°,and 1. 7km deep. There are some injection wells within the anticline,and significant injection-induced earthquakes were observed during the periods of injection of waste water into the deep formations through those wells. The best double couple solution of the M_L3.8 earthquake is 247°,48°and 104° for strike,dip and rate,respectively,for one nodal plane( and 46°,44° and 74°for another nodal plane),which is in agreement with the geometry of the buried fault.Therefore,we conclude that the M_L3.8 Rongchang earthquake is possibly the result of faulting along the buried reverse fault induced by water injection under the compressive stress regime in the area.展开更多
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftersh...Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning'er M6. 4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40kin and the width is 30km, concentrated obviously at the lateral displacement area between the Pu'er fault and the NNE-trending faults, with the majority occurring on the Pu'er fault around the main shock. The depths of aftershocks are from 2kin to 12km, and the predominant distribution is in the depth of 8 ~ 10km. The mean depth is 7. 9kin. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu'er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu'er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.展开更多
On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic e...On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic environment and a low-level historical seismicity.The macro-epicenter of the earthquake is located at Moxi town of Suining city,Sichuan province,China.The earthquake intensity of the epicenter area is degree VII,and the long axis of the isoseismal line trends in NE orientation.The Suining earthquake caused the collapse or destruction of 460 family houses.The earthquake focal mechanism solution and records of the near-field seismographic stations showed the earthquake occurred at the reverse fault at a depth 34 km.Based on the waveform and focal mechanism,we consider the Suning earthquake is triggered by the reverse fault and not by the gravitational collapse or man-made explosive sources.Basing on seismic refraction profile and borehole,we consider that the earthquake is triggered by the backthrust fault of Moxi anticline rooted in detachments at a depth 3-4 km.Furthermore,we infer that tectonic mechanism of the Suining(Ms5.0) Earthquake is driven by the horizontal crustal shortening and stress adjustment on a shallow detachment after the Wenchuan(Ms 8.0) earthquake.展开更多
In this paper,the seismogenic structures of the Da Qaidam strong earthquakes are preliminarily discussed by using the regional seismotectonic data and focal mechanism solutions. Analysis is done on the temporal and sp...In this paper,the seismogenic structures of the Da Qaidam strong earthquakes are preliminarily discussed by using the regional seismotectonic data and focal mechanism solutions. Analysis is done on the temporal and spatial distribution characteristics of the two strong earthquake sequences in Da Qaidam in combination with the sequence distribution characteristics of the M6. 6 earthquake of 2003 and the five strong earthquakes of about M5. 0 in 2004 in Delingha. At the same time,the regional characteristics of the historical seismic activity are also investigated. Preliminary analysis is done on the influence of the two M8. 0 earthquakes in the past 10 years on this region. Precursory anomalies and their characteristics are discussed in combination with the analysis of the precursor observation data of Qinghai Province.展开更多
The paper inverts the focal mechanism solutions of the Yutian M_S7. 3 main shock,foreshocks and M_S≥3. 5 aftershocks by using the CAP method,based on the broadband waveforms recorded by the Xinjiang and Tibet Digital...The paper inverts the focal mechanism solutions of the Yutian M_S7. 3 main shock,foreshocks and M_S≥3. 5 aftershocks by using the CAP method,based on the broadband waveforms recorded by the Xinjiang and Tibet Digital Seismic Networks. The results show that the M_S7. 3 strong earthquake is of strike-slip type with a normal faulting component,and combined with the analysis of focal structure and the aftershock distribution,the nodal plane I with strike 241°,dip 90° and rake- 22° is considered to be the seismogenic fault plane of the main shock. The direction of P-axis for the main shock is 194°,close to the near NS direction of the principal stress P-axis of historical strong earthquakes in this region. The focal mechanism solution of the M_S5. 4 foreshock has a good consistency with that of the main shock. Among the 18 aftershocks,10 are of strike-slip type,6 are of normal faulting type and 2 are of thrust type. 70% of the aftershocks in the sequence have a focal mechanism with P-axis in the near-NS direction. The focal depths of this M_S7. 3 earthquake sequences are distributed in the range of 5km- 28 km,with the majority in the depth range of 15km- 20 km,slightly deeper than the depth of 10 km of the main shock as calculated.展开更多
In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°...In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°, 74° and 120° for strike, dip and rake angles of one nodal plane respectively, and 131 °, 33°, 30° for the other nodal plane. The estimated focal depth is about 3kin. Both strikes of the two nodal planes differ significantly to the strike of Susong-Zongyang fault, along which seismic activity has been at a low level since the Late Quaternary. This implies that this earthquake may not have occurred on the Susong-Zongyang fault, and we infer that a buried fault with strike of NNE may be the seismogenic structure of this event.展开更多
With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical comp...With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical component. By system clustering,and using the vector synthesis method,the average focal mechanism solution is obtained. Using the above method,this paper analyzes the variation characteristics of the source ruptures and the P-axis azimuths of small earthquakes around the seismic zones before four strong earthquakes occurring since 2003 in the western part of north Tianshan and the middle part of Tianshan. The result shows that 2 ~ 3 years before the strong earthquakes,the focal mechanism types of small earthquakes are distributed randomly, and obvious dominant distributions are observed one year before the strong earthquakes. There are obvious changes in the P-axis azimuth.展开更多
The focal mechanism solutions of the Wenchuan earthquake (Ms8.0) of May 12, 2008 and some of its aftershocks occurring up to December I0, 2008 are determined with lower semisphere of equal-projection and first motio...The focal mechanism solutions of the Wenchuan earthquake (Ms8.0) of May 12, 2008 and some of its aftershocks occurring up to December I0, 2008 are determined with lower semisphere of equal-projection and first motion sign data of P waves from regional and distant stations. The focal mechanism solutions of the Ms8.0 Wenchuan earthquake are: Nodal plane I:strike 5°, dip angle 48°, slip angle 39°; Nodal plane II: strike 247°, dip angle 62°, slip angle 131°; P axis azimuth 309°, plunge 8°, T axis azimuth 208°, plunge 54°, B axis azimuth 44°, plunge 35% Combining geological tectonics and spatial distribution of aftershocks, nodal plane II can be identified as a seismogenic fault. According to focal mechanism solutions, the fault activity that triggered the huge earthquake is reverse thrusting. The main rupture surface is S67°W, basically identical to the fault strike on which the earthquake occurred. The main compression stress P axis is N51°W, which is basically the same as the direction of the regional tectonic stress field. According to the results of focal mechanism solutions of aftershocks, the aftershocks occurring in the southern and northern sections of the Longmenshan fault zone have predominant orientations and are obviously different. For the main shock and the early aftershocks occurring on the southern section of the Longmenshan fault, the rupturing is mainly characterized by reverse-dip slip with some strike-slip, and over time, the aftershocks migrated towards the northern section. The rupturing in the source is mainly characterized by strike-slip with some reverse-dip slips. The stress field is controlled by the main shock stress field in the southern section of the Longmenshan tectonic zone, while it is controlled by the main shock stress field and regional stress field in the northern section of the Longmenshan tectonic zone.展开更多
文摘据新疆地震台网测定,2019年10月27日13时29分,新疆阿克苏地区乌什县发生MS5.0地震(以下简称乌什MS5.0地震),震中为41.21°N,78.82°E,震源深度11 km,当天18时52分再次发生MS4.5地震,地震类型为多震型。地震震源机制的确定,对于研究地震的发震机制,孕震机理以及震后应力的分布,具有非常重要的意义[1-5]。早期的地震矩张量大都是由P波初动符号确定,如高国英等(1998)采用P波初动的方法计算1997年伽师强震群6级以上地震的震源机制解,确定了伽师震群的破裂面[6]。利用宽频带地震波形记录来反演地震矩张量可以避开P波初动求解震源机制的苛刻条件,可以得到整个地震破裂过程的信息。本文中利用目前较流行的CAP(Cut and Paste)方法快速计算了乌什MS5.0和MS4.5地震震源机制解,对于判定未来地震活动趋势具有重要意义,为震源区及其邻区的构造应力场积累了基础资料。
文摘In recent years, tsunami happens frequently in the world, which caused huge losses. In order to find objective features of tsunamigenic source, global CMT data from 1976 to 2010 and tsunami data from NOAA are analyzed statistically, tsunami is compared with bigger tsunamis. At last, some features of seismic tsunami sources are concluded.
基金funded by the Youth Program of Earthquake Scientific Research Fund of Anhui Province(20120704)Contract Subject of Earthquake Administration of Anhui Province(201210)
文摘The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region.
基金sponsored by the important projects of Yunnan Province,entitled"The regularity of strong earthquake activities and the plate margindynamic mechanism on the eastern margin of the Qinghai-Tibet plateau"(2010CC006)"Study on relationship between evolutionary dynamics of geophysical and geochemistry field and strong seismic activity in Yunnan"(JCYB200806015)
文摘In this paper, using focal mechanism solutions of moderate-strong earthquakes in Yunnan and its adjacent areas, and based on the statistical analysis of the parameters of focal mechanism solutions, we discussed in detail the earthquake fault types and the characteristics of the modern tectonic stress field in the Yunnan region. The results show that most moderate-strong earthquakes occurring in the Yunnan region are of the strike-slip type, amounting to 80% of the total. Normal faulting and normal with strike-slip and reverse and reverse with strike-slip earthquakes is almost equivalent in proportion, about 8% each. The tectonic stress field of the Yunnan region is near-horizontal, and the dips of earthquake fault planes are large. There are three main dynamic sources acting on the Yunnan region: one is the NE, NNE and NNW-directed acting force from Myanmar, Laos and Vietnam; the second is the SE-SSE directed force from the Sichuan and Sichuan-Yunnan rhombus block and the third is the NW-NNW directed force from the South China block. These three acting forces have controlled the faulting behavior of the main faults and the characteristics of strong earthquake activity of Yunnan and its adjacent regions.
基金supported by the Earthquake Science and Technology Development Fund of Lanzhou Institute of Seismology,CEA(2012M01)National Natural Science Foundation(41174059)China Earthquake Administration as a Work Assignment for Seismic Situation Tracing(2012020101)
文摘In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster's test,then quantitatively analyzed the correlation between strong earthquakes in the Chinese mainland and tidal Coulomb failure stress.Research shows that among 57 strong earthquakes with focal mechanism solutions,over 71.9%took place within the tidal loading phase,with the p-value of 3.83%,indicating that strong earthquakes with M S≥7.0 in Chinese mainland have a certain correlation with lunisolar tidal Coulomb failure stress.In the active period,the p-value is4.56%,75.5%of earthquakes occurred in the tidal loading phase zone,and 50%of earthquakes occurred in the quiescence period,indicating that strong earthquakes in the active period were obviously triggered with the tidal Coulomb failure stress loading.
基金sponsored by the Earthquake Scientific Spark Program of China Earthquake Administration(XH12026Y)
文摘1,209 earthquakes occurred in Xianyou,Fujian from August 4,2010 to October 4,2013.The largest earthquake was M L5. 0 on September 4,2013. In order to study the Xianyou earthquake sequence and understand the causative structure and stress field of Xianyou,the focal mechanism solutions of six earthquakes( M L> 3. 5) in the Xianyou earthquake sequence are calculated using the broadband digital data of the Fujian Seismic Network with the seismic moment tensor inverse method. The results show that the focal faults of the six earthquakes are similar,which are all strike-slip faults striking to the northwest with high dip angles. The direction of the principal compressive stress axes is near SN,which is different from the stress field of Fujian region. The Xianyou earthquake sequence may have been induced by the stress adjustment after the impoundment of Jinzhong reservoir.
基金funded jointly by the Scitech R&D Program of Chongqing Municipality(cstc2014yykfA00002(cstc2014yykfA0234),cstc2014jccxA0028 and cstc2013ggB0011)the Spark Program of Earthquake Sciences of CEA(Grant No.XH14042)
文摘A M_L3.8 earthquake occurred on February 23,2014 in Rongchang County,which is located at the southern edge of the Sichuan Basin in the border area between Sichuan and Chongqing. This paper presents results of focal mechanism solution of this earthquake using the CAP( cut and paste) method based on broadband seismograms recorded by regional seismic stations. Our results show that the moment magnitude is M_W3. 09 and focal depth is 3km. The hypocenter of this earthquake is located close to a buried fault in the Luoguangshan anticline. Oil prospecting and deep drilling data indicate that this buried fault is a thrust fault,striking SW230°,dipping NW45°,and 1. 7km deep. There are some injection wells within the anticline,and significant injection-induced earthquakes were observed during the periods of injection of waste water into the deep formations through those wells. The best double couple solution of the M_L3.8 earthquake is 247°,48°and 104° for strike,dip and rate,respectively,for one nodal plane( and 46°,44° and 74°for another nodal plane),which is in agreement with the geometry of the buried fault.Therefore,we conclude that the M_L3.8 Rongchang earthquake is possibly the result of faulting along the buried reverse fault induced by water injection under the compressive stress regime in the area.
基金sponsored by the Joint Earthquake Science Foundation,China (200804)
文摘Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning'er M6. 4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40kin and the width is 30km, concentrated obviously at the lateral displacement area between the Pu'er fault and the NNE-trending faults, with the majority occurring on the Pu'er fault around the main shock. The depths of aftershocks are from 2kin to 12km, and the predominant distribution is in the depth of 8 ~ 10km. The mean depth is 7. 9kin. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu'er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu'er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.
基金the National Natural Science Foundation of China (Grant No. 40841010,40972083,41172162)the National Science and Technology Support Program (Grant nNo. 2006BAC13B02-107,2006BAC13B01-604) for the funding
文摘On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic environment and a low-level historical seismicity.The macro-epicenter of the earthquake is located at Moxi town of Suining city,Sichuan province,China.The earthquake intensity of the epicenter area is degree VII,and the long axis of the isoseismal line trends in NE orientation.The Suining earthquake caused the collapse or destruction of 460 family houses.The earthquake focal mechanism solution and records of the near-field seismographic stations showed the earthquake occurred at the reverse fault at a depth 34 km.Based on the waveform and focal mechanism,we consider the Suning earthquake is triggered by the reverse fault and not by the gravitational collapse or man-made explosive sources.Basing on seismic refraction profile and borehole,we consider that the earthquake is triggered by the backthrust fault of Moxi anticline rooted in detachments at a depth 3-4 km.Furthermore,we infer that tectonic mechanism of the Suining(Ms5.0) Earthquake is driven by the horizontal crustal shortening and stress adjustment on a shallow detachment after the Wenchuan(Ms 8.0) earthquake.
基金funded by the project of "Intensive Monitoring and Tracking Studies in the Key Seismic Risk Regions of China in 2011 " of China Earthquake Administration( 2011016301)the‘Comprehensive study of Delingha and Da Qaidam Strong Earthquake Swarms ( 2009A01)of the Earthquake Science Foundation of Qinghai Province,China
文摘In this paper,the seismogenic structures of the Da Qaidam strong earthquakes are preliminarily discussed by using the regional seismotectonic data and focal mechanism solutions. Analysis is done on the temporal and spatial distribution characteristics of the two strong earthquake sequences in Da Qaidam in combination with the sequence distribution characteristics of the M6. 6 earthquake of 2003 and the five strong earthquakes of about M5. 0 in 2004 in Delingha. At the same time,the regional characteristics of the historical seismic activity are also investigated. Preliminary analysis is done on the influence of the two M8. 0 earthquakes in the past 10 years on this region. Precursory anomalies and their characteristics are discussed in combination with the analysis of the precursor observation data of Qinghai Province.
基金funded jointly by Foundation of Earthquake Administration of Xinjiang Uygur Autonomous Region(Grant No.201401)the Contract for Annual Earthquake Situation Tracking Task of 2014,CEA(2014020106)
文摘The paper inverts the focal mechanism solutions of the Yutian M_S7. 3 main shock,foreshocks and M_S≥3. 5 aftershocks by using the CAP method,based on the broadband waveforms recorded by the Xinjiang and Tibet Digital Seismic Networks. The results show that the M_S7. 3 strong earthquake is of strike-slip type with a normal faulting component,and combined with the analysis of focal structure and the aftershock distribution,the nodal plane I with strike 241°,dip 90° and rake- 22° is considered to be the seismogenic fault plane of the main shock. The direction of P-axis for the main shock is 194°,close to the near NS direction of the principal stress P-axis of historical strong earthquakes in this region. The focal mechanism solution of the M_S5. 4 foreshock has a good consistency with that of the main shock. Among the 18 aftershocks,10 are of strike-slip type,6 are of normal faulting type and 2 are of thrust type. 70% of the aftershocks in the sequence have a focal mechanism with P-axis in the near-NS direction. The focal depths of this M_S7. 3 earthquake sequences are distributed in the range of 5km- 28 km,with the majority in the depth range of 15km- 20 km,slightly deeper than the depth of 10 km of the main shock as calculated.
基金supported by the China Earthquake Administration as a work Assignment for Seismic Situation Tracing for Earthquake Forecast and Prediction (2011020104)
文摘In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°, 74° and 120° for strike, dip and rake angles of one nodal plane respectively, and 131 °, 33°, 30° for the other nodal plane. The estimated focal depth is about 3kin. Both strikes of the two nodal planes differ significantly to the strike of Susong-Zongyang fault, along which seismic activity has been at a low level since the Late Quaternary. This implies that this earthquake may not have occurred on the Susong-Zongyang fault, and we infer that a buried fault with strike of NNE may be the seismogenic structure of this event.
基金funded as a sub-project under the National Science and Technology Pillar Program of China(2006BAC01B03-04-02)
文摘With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical component. By system clustering,and using the vector synthesis method,the average focal mechanism solution is obtained. Using the above method,this paper analyzes the variation characteristics of the source ruptures and the P-axis azimuths of small earthquakes around the seismic zones before four strong earthquakes occurring since 2003 in the western part of north Tianshan and the middle part of Tianshan. The result shows that 2 ~ 3 years before the strong earthquakes,the focal mechanism types of small earthquakes are distributed randomly, and obvious dominant distributions are observed one year before the strong earthquakes. There are obvious changes in the P-axis azimuth.
基金sponsored by the Basic Scientific Research Business Special,Institute of Geophysics,China Earthquake Administration (DQJB08B17)
文摘The focal mechanism solutions of the Wenchuan earthquake (Ms8.0) of May 12, 2008 and some of its aftershocks occurring up to December I0, 2008 are determined with lower semisphere of equal-projection and first motion sign data of P waves from regional and distant stations. The focal mechanism solutions of the Ms8.0 Wenchuan earthquake are: Nodal plane I:strike 5°, dip angle 48°, slip angle 39°; Nodal plane II: strike 247°, dip angle 62°, slip angle 131°; P axis azimuth 309°, plunge 8°, T axis azimuth 208°, plunge 54°, B axis azimuth 44°, plunge 35% Combining geological tectonics and spatial distribution of aftershocks, nodal plane II can be identified as a seismogenic fault. According to focal mechanism solutions, the fault activity that triggered the huge earthquake is reverse thrusting. The main rupture surface is S67°W, basically identical to the fault strike on which the earthquake occurred. The main compression stress P axis is N51°W, which is basically the same as the direction of the regional tectonic stress field. According to the results of focal mechanism solutions of aftershocks, the aftershocks occurring in the southern and northern sections of the Longmenshan fault zone have predominant orientations and are obviously different. For the main shock and the early aftershocks occurring on the southern section of the Longmenshan fault, the rupturing is mainly characterized by reverse-dip slip with some strike-slip, and over time, the aftershocks migrated towards the northern section. The rupturing in the source is mainly characterized by strike-slip with some reverse-dip slips. The stress field is controlled by the main shock stress field in the southern section of the Longmenshan tectonic zone, while it is controlled by the main shock stress field and regional stress field in the northern section of the Longmenshan tectonic zone.