Y2O3:Eu3+ phosphors were synthesized by the surface diffusion method (SDM). X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the struct...Y2O3:Eu3+ phosphors were synthesized by the surface diffusion method (SDM). X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the structure, morphology and component of Y2O3:Eu3+ phosphors. The photoluminescent (PL) properties were also investigated. The results reveal that the PL intensity of Y2O3:Eu3+ phosphors prepared by the surface diffusion method (SDM) is much higher than that prepared by homogeneous co-precipitation. The luminescence efficiency of the sample (Y0.997, Eu0.003)2O3 prepared by the SDM is almost 1.9 times that by homogeneous co-precipitation. The concentration of Eu3+ in the phosphor Y2O3:Eu3+ prepared by the surface diffusion can be reduced greatly owing to the activator, Eu3+ ions, distributing mainly in the outer layer of the phosphors where the photon generation process occurs.展开更多
基金Project(2007CB613607) supported by the National Basic Research Program of China
文摘Y2O3:Eu3+ phosphors were synthesized by the surface diffusion method (SDM). X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the structure, morphology and component of Y2O3:Eu3+ phosphors. The photoluminescent (PL) properties were also investigated. The results reveal that the PL intensity of Y2O3:Eu3+ phosphors prepared by the surface diffusion method (SDM) is much higher than that prepared by homogeneous co-precipitation. The luminescence efficiency of the sample (Y0.997, Eu0.003)2O3 prepared by the SDM is almost 1.9 times that by homogeneous co-precipitation. The concentration of Eu3+ in the phosphor Y2O3:Eu3+ prepared by the surface diffusion can be reduced greatly owing to the activator, Eu3+ ions, distributing mainly in the outer layer of the phosphors where the photon generation process occurs.