New LIDAR (Light Detection and Ranging) and sonar imagery have revealed remarkable geomorphic details never seen before and not visible by any other means. Numerous faults and other geologic structures are plainly v...New LIDAR (Light Detection and Ranging) and sonar imagery have revealed remarkable geomorphic details never seen before and not visible by any other means. Numerous faults and other geologic structures are plainly visible on LIDAR and sonar images. Many previously unknown faults criss-cross the islands and large fault scarps are visible on sonar imagery along the margins of the larger islands. Sonar images of sea floor morphology show many submerged faults as long linear scarps with relief up to 300m (1,000 fl), some of which visibly truncate geologic structures. The San Juan Lopez fault, the largest fault in the islands, extends for at least 65 km (40 mi) from Stuart Island to Rosario strait with a scarp up to 330m (1,000 it) high. Since 1975, the basic structural framework of the San Juan Islands has been considered to consist of five stacked thrust faults, the Rosario, Orcas, Haro, Lopez, and Buck Bay faults, constituting the San Juan Thrust (Nappe) System that has shuffled together far distant terranes. However, the new LIDAR and sonar imagery shows that most of the mapped extent of these postulated faults are actually segments of high angle, dipslip faults and are not thrust faults at all. Thus, the San Juan Thrust (Nappe) System does not exist. The age of these faults is not accurately known and more than one period of high angle faulting may have occurred. Faults shown on L1DAR images of the surface of the islands appear as visible gashes, etched out by erosion of fault zones with few fault scarps. However, the sea floor faults have bold relief and high scarps. A late Pleistocene moraine lies undisturbed across the San Juan Lopez fault.展开更多
文摘New LIDAR (Light Detection and Ranging) and sonar imagery have revealed remarkable geomorphic details never seen before and not visible by any other means. Numerous faults and other geologic structures are plainly visible on LIDAR and sonar images. Many previously unknown faults criss-cross the islands and large fault scarps are visible on sonar imagery along the margins of the larger islands. Sonar images of sea floor morphology show many submerged faults as long linear scarps with relief up to 300m (1,000 fl), some of which visibly truncate geologic structures. The San Juan Lopez fault, the largest fault in the islands, extends for at least 65 km (40 mi) from Stuart Island to Rosario strait with a scarp up to 330m (1,000 it) high. Since 1975, the basic structural framework of the San Juan Islands has been considered to consist of five stacked thrust faults, the Rosario, Orcas, Haro, Lopez, and Buck Bay faults, constituting the San Juan Thrust (Nappe) System that has shuffled together far distant terranes. However, the new LIDAR and sonar imagery shows that most of the mapped extent of these postulated faults are actually segments of high angle, dipslip faults and are not thrust faults at all. Thus, the San Juan Thrust (Nappe) System does not exist. The age of these faults is not accurately known and more than one period of high angle faulting may have occurred. Faults shown on L1DAR images of the surface of the islands appear as visible gashes, etched out by erosion of fault zones with few fault scarps. However, the sea floor faults have bold relief and high scarps. A late Pleistocene moraine lies undisturbed across the San Juan Lopez fault.