期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制 被引量:2
1
作者 王亚伦 周涛 +2 位作者 陈中 王毅 权浩 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第11期1477-1491,共15页
风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的... 风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的弊端,难以满足不同场景下快速提供最优控制效果的需求.为实现负荷扰动事件下风电调频的最优逐步惯性快速控制,引入深度学习算法,提出一种基于堆叠式降噪自动编码器(SDAE)和深度神经网络(DNN)的风电调频逐步惯性智能控制方法.首先,使用麻雀搜索算法获得最优参数,使用SDAE高效提取数据特征;随后,基于DNN对数据特征进行学习,并引入加速自适应矩估计优化网络参数,提升网络全局最优参数;最后,应用SDAE-DNN联合方法实现扰动事件后风电调频的逐步惯性在线控制.在IEEE 30节点测试系统中分别对单台风力机和风电场进行仿真分析,与传统方法、浅层反向传播神经网络及原始DNN所得结果对比发现,所提网络结构具有更优的预测精度和泛化能力,该方法能够实现良好的逐步惯性调频效果. 展开更多
关键词 逐步惯性控制 二次频率跌落 麻雀搜索算法 降噪自动编码器 深度神经网络
下载PDF
ARM+FPGA双核计算的配电自动化终端设计
2
作者 郑军生 杨俊哲 +1 位作者 许文秀 吴宏伟 《自动化仪表》 CAS 2024年第1期59-63,共5页
为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(S... 为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(SAE)深度学习模型基础上融合神经网络(NN)模型,应用过程中改善传统NN对分层节点数目的限制。试验结果表明,所设计终端随着系统运行能达到95%以上的精度,而现有SAE模型仅达到85%左右的精度。通过与文献[1]和文献[2]方法的对比可知,所设计终端有较高的调度能力。该设计显著提高了配电网数据信息的分析精度,大幅提升了电网应用对数据信息处理的准确度和效率。 展开更多
关键词 配电自动化终端 现场可编程门阵列 堆叠式自动编码器 神经网络 数据调试 分析精度 调度能力
下载PDF
基于深度强化学习的旋转机械故障诊断策略 被引量:10
3
作者 龙舰涵 《机械设计与制造》 北大核心 2021年第10期288-294,共7页
由于传统深度学习方法无法挖掘原始振动数据与旋转机械状态之间的非线性映射关系,提出了一种基于堆叠式自动编码器与深度Q网络相结合的深度强化学习旋转机械故障诊断方法。首先建立故障诊断“博弈”模型,该博弈模型可以为故障诊断代理... 由于传统深度学习方法无法挖掘原始振动数据与旋转机械状态之间的非线性映射关系,提出了一种基于堆叠式自动编码器与深度Q网络相结合的深度强化学习旋转机械故障诊断方法。首先建立故障诊断“博弈”模型,该博弈模型可以为故障诊断代理提供观察、行动和获得奖励的交互式环境。然后,堆叠式自动编码器采用完全连接模型进行逐级的内在特征学习从而构建了故障诊断代理,然后通过引入记忆回放和迭代更新策略以及奖励反馈机制,使得深度Q网络实现了原始振动信号与故障模式之间的非线性映射关系。最后通过实验证明了提出方法的有效性与可行性。 展开更多
关键词 故障诊断 旋转机械 深度强化学习 堆叠式自动编码器 深度Q网络
下载PDF
基于SDAE与RELM的EEG情感识别方法 被引量:2
4
作者 连卫芳 晁浩 刘永利 《计算机工程》 CAS CSCD 北大核心 2021年第9期75-83,共9页
针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初... 针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初始特征,使用SDAE进行无监督特征学习,提取初始特征的高层抽象表示。在网络的回归层,使用RELM进行情感分类。在DEAP数据集上的实验结果表明,与SDAE以及DT、KNN等传统基于机器学习的方法相比,该方法在实时性、准确性和泛化性能等方面均有明显提升。 展开更多
关键词 情感识别 脑电信号 情感特征 降噪自动编码器 正则化极限学习机
下载PDF
Gait recognition based on Wasserstein generating adversarial image inpainting network 被引量:4
5
作者 XIA Li-min WANG Hao GUO Wei-ting 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2759-2770,共12页
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a... Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition. 展开更多
关键词 gait recognition image inpainting generating adversarial network stacking automatic encoder
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部